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EXECUTIVE SUMMARY 

Adaptive Signal Control System (ASCS) is typically deployed at intersections and corridors to 

improve operational performance, such as travel time and traffic delay. Compared to the conventional 

signal control systems (i.e., pre-timed signal control, semi-actuated and fully-actuated signal control) with 

predefined timing parameters (ideally re-adjusted every two to three years), ASCS can change the signal 

timings (i.e., phase splits, phase sequence, offsets, and cycle length) in real-time to accommodate 

fluctuating traffic demand at intersections. Also, ASCS can adjust offsets to coordinate several 

intersections along a corridor, thus leading to fewer traffic stops. By handling conflicting traffic 

movements and establishing dynamic coordination between intersections along a corridor in real-time, 

ASCS can potentially improve traffic operations. The question the South Carolina Department of 

Transportation (SCDOT) had, and one that is addressed in this research, is: What are the safety benefits 

of ASCS, and which corridors would benefit most from ASCS in terms of safety and operation? To answer 

this question, the research team focused on the following objectives:  

1. Determine the effect of ASCS on the crash frequency. 

2. Investigate the effect of ASCS on the crash severity. 

3. Determine the effect of ASCS on the likelihood of secondary crashes on those freeway sections 

that have alternate corridors with ASCS. 

4. Determine the operational effectiveness of ASCS in the travel time and travel time reliability. 

5. Recommend the type of corridors that are best suited for ASCS implementation for traffic 

safety and operational improvement.  

Based on the literature review, it was found that ASCS was effective in reducing crashes in some 

studies, while in others, ASCS was not effective in significantly reducing crashes. Evaluation of the effects 

of ASCS on crash severity was predominantly absent from the literature.  

A national survey was conducted of State Departments of Transportation in the U.S. The survey 

results showed that most states considered or studied ASCS, though many have not implemented ASCS. 

The survey also identified corridor characteristics, such as the design speed and Annual Average Daily 

Traffic (AADT) of an ASCS corridor, which would allow for the best operational and safety outcomes. 

To determine the safety effects of ASCS on the crash frequency, the research team developed a 

Fully Bayesian (FB) framework for the before-and-after study. The research team evaluated the safety 

effectiveness of ASCS at 11 ASCS corridors with a total of 109 signalized intersections located throughout 

South Carolina. ASCS showed crash reductions for most ASCS corridors and intersections. The safety 

effectiveness of ASCS varied across the intersections, depending on their characteristics (e.g., AADT at 

a major street and the speed limit at a major street).  

To determine the effect of ASCS on crash severity, the research team developed random-parameter 

ordered regression models using crash data from 11 ASCS corridors with a total of 109 signalized 

intersections. The analyses revealed that the presence of ASCS was associated with lower crash severity. 
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The crash severity study revealed practical implications: 1) when the speed limit difference (the maximum 

and minimum value of the speed limit in the study intersections is 55 mph and 20 mph, respectively) 

between a major street and a minor street at an ASCS intersection is equal to or greater than 10 mph, and 

the average signal distance on an ASCS corridor is less than the threshold of 0.49 miles, ASCS was more 

likely associated with lower crash severity, and 2) when speed limit difference between a major street and 

a minor street at an ASCS intersection is less than 10 mph, and the average signal distance on an ASCS 

corridor is less than the threshold of 0.69 miles, ASCS was more likely associated with lower crash 

severity. 

To assess whether ASCS deployed on an arterial parallel to the freeway reduced secondary crashes 

on the freeway, the research team developed a binary logistic regression model using 52 months of crash 

data on I-26 (Eastbound). On the study segment of I-26, it has a route with ASCS deployed, which 

motorists often used when there is an incident on I-26. The analysis showed a 47% reduction in the 

likelihood of freeway secondary crashes when ASCS is deployed on the alternate route to a freeway. The 

benefit of ASCS deployment on an alternate route towards freeway secondary crash reduction was found 

to be dependent on the location of the primary crash. The location of the primary crash determines how 

much of the upstream traffic will elect to or be able to take the exit ramp to the ASCS deployed alternate 

route.   

To evaluate whether ASCS is effective in terms of travel time reduction and travel time reliability 

improvement, the research team evaluated 11 ASCS corridors, with a total of 102 intersections. This study 

revealed that when ASCS was operational, it reduced travel time by 6.4% on average and improved the 

travel time reliability by 31.4% on average for all the study corridors, compared to when the ASCS was 

not operational (i.e., when the signal control system on the same study corridor uses a predefined signal 

timing strategy, which could either be a pre-timed or an actuated signal timing plan based on the particular 

intersection on the corridor). The effectiveness of ASCS in reducing travel time was found to be consistent 

in both directions on an hourly basis for eight ASCS corridors out of 11, whereas the effectiveness of 

ASCS in improving travel time reliability was consistent in both directions on an hourly basis for only 

five ASCS corridors out of 11. This study also found that ASCS produced higher operational benefits if 

the average speed of an ASCS corridor is equal to or lower than 35 mph, and the number of signals on an 

ASCS corridor is more than 10. 

Figure 1 highlights the safety and operational impacts of ASCS at the study corridors as found in 

this study.  
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Figure 1 Safety and operational impacts of adaptive signal control systems at study corridors 
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CHAPTER 1 INTRODUCTION 

From 2008 to 2012, 25% of the total crashes in South Carolina were intersection-related crashes 

(SCDOT, 2015). During this five-year period, about 166 people were killed and about 1,520 people 

annually were severely injured in intersection-related crashes in South Carolina. According to the state’s 

Strategic Highway Safety Plan, reducing crash frequency and severity at intersections by traffic control 

has been identified as a primary objective (SCDOT, 2015). Transportation agencies have been seeking 

new insights and approaches to improve safety at signalized intersections. 

The South Carolina Department of Transportation (SCDOT) has installed several Adaptive Signal 

Control Systems (ASCSs) in the state, with more planned in the near future. Some counties and cities in 

South Carolina are also planning to install ASCS. In South Carolina, at the time of writing this report, two 

types of ASCS (SynchroGreen and InSync), are operated at 189 intersections on 19 corridors throughout 

the state.  

ASCS is an advanced signal control system typically deployed at intersections and corridors to 

improve operational performance, such as travel time and traffic delay. Compared to the conventional 

signal control systems (i.e., pre-timed signal control and actuated signal control) with predefined signal 

plans (ideally re-adjusted every two to three years), ASCS can change the signal timings (i.e., phase splits, 

phase sequence, offsets, and cycle length) in real-time to accommodate fluctuating traffic demand at 

intersections. Also, ASCS can adjust offsets to coordinate several intersections along a corridor, leading 

to fewer traffic stops. ASCS is believed to be superior to conventional coordinated signal systems in that 

they: 1) improve traffic flow and ease congestion, 2) provide a faster response to changing traffic 

conditions, such as traffic incidents, 3) reduce costs to businesses and consumers by reducing delay and 

associated wasted fuel and lost productivity, and 4) potentially reduce the number of crashes at 

intersections. 

Operational benefits of ASCS in both corridor and intersection have been documented (Eghtedari, 

2005; Elkins & Niehus, 2012; Fontaine et al., 2015; Kergaye et al., 2009; Khattak, 2016; Khattak et al., 

2020; So et al., 2014). By handling conflicting traffic movements and establishing dynamic coordination 

between intersections in real-time, ASCS can improve operational traffic conditions, which may 

potentially improve the safety of signalized intersections and corridors (Dutta et al., 2010; Jin et al., 2019; 

Khattak et al., 2018; Ma et al., 2016).  

While the operational benefits of ASCS are well documented (Stevanovic, 2010), the information 

available regarding the safety impacts of ASCS is scarce. The question the South Carolina Department of 

Transportation (SCDOT) had and one that is addressed in this research is: What are the safety benefits of 

ASCS, and which corridors would benefit most from ASCS in terms of safety and operation? 

The objectives of this research are to:  

1. Determine the effect of ASCS on the crash frequency. 

2. Investigate the effect of ASCS on the crash severity. 
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3. Determine the effect of ASCS on the likelihood of secondary crashes on those freeway sections 

that have alternate corridors with ASCS. 

4. Determine the operational effectiveness of ASCS in the travel time and travel time reliability. 

5. Recommend the type of corridors that are best suited for ASCS implementation for traffic 

safety and operational improvement.  

To this end, the research team evaluated the safety effects of ASCS on the crash frequency at 11 

ASCS corridors with a total of 109 signalized intersections by developing a Fully Bayesian (FB) paradigm 

for a before-and-after study. Additionally, the research team investigated the effects of ASCS on the crash 

severity at 11 ASCS corridors with a total of 109 signalized intersections by developing random-parameter 

ordered regression models. To assess whether ASCS deployed on an arterial parallel to the freeway could 

reduce secondary crashes on the freeway, the research team developed a binary logistic regression model 

using 52 months of crash data on I-26 (Eastbound). To evaluate whether ASCS is effective in terms of 

travel time reduction and travel time reliability improvement, the research team evaluated 11 ASCS 

corridors, with a total of 102 intersections.   
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CHAPTER 2 LITERATURE REVIEW 
 

2.1 Crash Frequency Study 

Safety benefits of ASCS were demonstrated in several studies. Fontaine et al. (Fontaine et al., 

2015) evaluated the safety effects of InSync, a type of ASCS, for different corridors in Virginia using an 

Empirical Bayes (EB) before-and-after study. Based on the analysis, the authors found that crashes are 

reduced by 17% due to ASCS. Dutta et al. (Dutta et al., 2010) studied crash data for one type of ASCS 

(i.e., SCATS) and fixed-time signal control systems for two corridors in Michigan. The authors (Dutta et 

al., 2010) evaluated the change in the crash rate before and after the ASCS deployment. The authors found 

that the total crash rate is reduced by 6% after installing ASCS. The incapacitating injury crashes were 

reduced by 22% after ASCS deployment. The most significant improvement was found for non-

incapacitating injury crashes, which were reduced by 35%. Fink et al. (Fink et al., 2016) studied the safety 

impacts of SCATS installed at signalized intersections in Oakland County. The authors performed a cross-

sectional study using data from 498 signalized intersections and found that a reduction of 19.3% in angle 

crashes was associated with SCATS. This study found that SCATS did not significantly reduce 

incapacitating injuries or fatality (Fink et al., 2016). Khattak (Khattak, 2016) evaluated 41 intersections 

in Pennsylvania where SURTRAC and InSync were installed. The author implemented an EB before-and-

after safety study and computed Crash Modification Factors (CMF) for total crashes and fatal and injury 

crashes. The author found reductions of 34% and 45% in total crashes and fatal and injury crashes, 

respectively, due to ASCS.  

ASCS is not always effective in reducing crashes in a statistically significant manner. Jesus and 

Benekohal implemented the EB method to determine the safety effectiveness of the ASCS (Jesus & 

Benekohal, 2019). The authors (Jesus & Benekohal, 2019) found that the CMF of ASCS for fatal and 

injury crashes was 0.67 (CMF less than 1 indicates that ASCS reduces crashes), which was not statistically 

significant at a 0.05 significance level. CMFs of property damage only and total crashes were close to one, 

which indicated no crash reduction due to ASCS. The CMF for fatal, incapacitating injury and non-

incapacitating injury combined was 0.68, which was not significant at a 0.05 significance level. The angle, 

rear-end, incapacitating injury, and reported/not evident injury (i.e., this includes momentary 

unconsciousness, claims of no evident injuries, limping, complaints of pain, nausea, hysteria) crashes 

showed insignificant reductions. 

2.2 Crash Severity Study 

Evaluation of the impact of ASCS deployment on crash severity outcomes is predominantly absent 

from the literature. Only a few studies related to crash severity effects of ASCS were identified. Dutta et 

al. (Dutta et al., 2010) used before period (1999 to 2001) and after period (2003 to 2008) crash data from 

one corridor with SCATS and another with the pre-timed signal. They performed a t-test analysis and 

found that a definite change in severity from incapacitating injury and non-incapacitating injury to 

possible injury. But the t-test failed to prove the superiority of SCATS over the pre-timed signal control 

system in lowering the crash severity at a 0.05 significance level.  
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In their analysis, Fink et al. (Fink et al., 2016) used data from 498 signalized intersections in 

Michigan. They found that a statistically significant reduction in non-incapacitating injuries was 

associated with SCATS deployment. However, they did not find a statistically significant reduction in 

fatal and incapacitating injuries associated with SCATS. 

Similarly, in the examination of the effects of ASCS on the crash severity, Khattak et al. (Khattak 

et al., 2019) identified the disparity between two different types of ASCS and between two states- 

Pennsylvania and Virginia, where ASCS was deployed.  They found that both ASCS systems were 

associated with lower crash severity, and ASCS systems implemented in two states were also associated 

with lower crash severity. 

2.3 Secondary Crash Study 

Several studies have investigated the criteria to identify secondary crashes. Table 1 shows a 

summary of these criteria. Raub (Raub, 1997a, 1997b) assumed that any crashes within the time period of 

primary crash plus 15 minutes and within a mile from the primary crash in the upstream are accounted for 

as secondary crashes. Based on these criteria, the author identified secondary crashes and found that 81 

primary crashes were followed by 97 secondary events. They concluded that one of every 11 incidents 

that occurred in Rolling Meadows (between January 9, 1995, and February 5, 1995) was associated with 

one or more secondary crashes. Karlaftis et al. (Karlaftis et al., 1999) analyzed five years of incident data 

on Borman Expressway in Illinois to identify the primary crash characteristics that led to the secondary 

crashes. Latoski et al. (Latoski et al., 1999) analyzed the data from portions of I-80, I-94, and I-65 in North 

West Indiana. Both Karlaftis et al. (1999) and Latoski et al. (Latoski et al., 1999) considered three miles 

upstream of the primary crash and the clearance time plus 15 minutes of the primary crash to identify 

secondary crashes. 

Moore et al. (Moore et al., 2004) studied 84,684 crashes in California. The authors considered 

crashes that occurred within a two-hour period and two miles in both directions of the primary crashes as 

an identification measure for secondary crashes. Hirunyanitiwattana and Mattingly (Hirunyanitiwattana 

& Mattingly P, 2006) studied the characteristics of secondary crashes using two years of data from the 

California highway system from 1999 to 2000. They found that a secondary crash was the one that 

occurred within an hour and two miles upstream of the primary crash. They also found that the proportion 

of secondary crashes was higher in urban areas compared to rural areas. Yang et al. (Yang et al., 2013) 

developed a method based on a binary speed contour plot to account for the dynamic characteristics of 

spatial-temporal impact range in identifying secondary crashes. This study used sensor data from a 27-

mile urban highway section in New Jersey. The authors found that almost 50% of the secondary crashes 

occurred within a two-mile range in the upstream, and 75% of the secondary crashes occurred within up 

to two hours of the primary crashes.  
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Table 1 Review of secondary crash identification criteria 

Author(s), year Secondary crash identification criteria Road type 

Raub, 1997a,b Clearance time + 15 minutes, 1 mile Urban arterial 

Karlaftis et al., 1999 Clearance time + 15 minutes, 1 mile Freeway/expressway 

Latoski et al., 1999 Clearance time + 15 minutes, 3 miles Freeway 

Moore et al., 2004 2 hours, 2 miles  Freeway 

Hirunyanitiwattana and 

Mattingly, 2006 
1 hour, 2 miles Urban/rural freeway/highway 

Yang et al., 2013 2 hours, 2 miles Urban highway 

 

Karlaftis et al. (Karlaftis et al., 1999) primarily investigated contributing factors that induce a 

secondary crash. They developed a binary logistic regression model using the attributes of primary crashes 

to estimate the possibility of a secondary crash. The study concluded that the attributes such as clearance 

time, season, type of vehicle involved, and lateral location of the primary crash were the most significant 

factors for the increased likelihood of secondary crashes. Goodall (Goodall, 2017) developed a binary 

logistic regression model to predict the occurrence of secondary crashes over time. Three contributing 

factors were considered, namely whether congestion occurred or did not occur by the incident, the incident 

duration, and the approximate number of vehicles that encountered the incident if no congestion or its 

queue if congestion was present in the same direction. The results revealed that, for every two to three 

minutes spent for a congested scenario, the secondary crash occurrence probability approximately 

increased by 1%. Xu et al. (Xu et al., 2016) used the Bayesian random effect logit model to develop a 

secondary crash risk prediction model. The model associated the prediction probability of secondary 

crashes with real-time traffic variables (e.g., average speed, traffic volume, and the standard deviation of 

detector occupancy), primary crash characteristics (e.g., date and time of the primary crash, primary crash 

severity, and crash type), weather conditions, and geometric characteristics. The most significant real-

time traffic variables were traffic volume, average speed, the standard deviation of detector occupancy, 

and volume difference between adjacent lanes. The study concluded that secondary crash prediction 

accuracy could be increased by 16.6% by including traffic flow variables.  

2.4 Operational Evaluation Study 

The following provides a review of prior studies that evaluated the operational effectiveness of 

ASCS.  

Kergaye et al. evaluated the operational effectiveness of SCATS, a type of ASCS, for two corridors 

in Utah (Kergaye et al., 2009). They found that SCATS was effective in reducing stopped delay at 
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intersections, the number of stops, and travel time. Another performance evaluation study on SCATS was 

conducted by Tian et al. based on travel time and traffic stops data collected from a major arterial section 

in Las Vegas, Nevada (Tian et al., 2011). However, they found that SCATS was not effective in reducing 

the number of stops and travel time compared to conventional optimized Time of Day (TOD) coordinated 

signal system. Hunter et al. (2012) evaluated SCATS deployed at 15 intersections in Cobb County in 

Georgia (Hunter et al., 2012). However, the authors did not find any significant improvement in terms of 

speed, travel time, and delay caused by SCATS compared to the TOD signal control systems. 

Hutton et al. evaluated the operational performance of InSync, another type of ASCS, for one 

corridor with 12 intersections located in Missouri (Hutton et al., 2010). The authors found up to a 39% 

decrease in travel time resulted from ASCS implementation, which varied with the direction of travel and 

time of day. In addition, they observed a reduction in the number of stops, fuel consumption, emission in 

the after period of ASCS implementation. Elkins and Niehus evaluated the effectiveness of InSync for 

one corridor located in New York (Elkins & Niehus, 2012). The authors found that InSync reduced travel 

times by 9%-43% in eastbound and 10%-29% in westbound during peak periods. In a simulation study 

conducted by Stevanovic and Zlatkovic, InSync deployed on a corridor in Florida was compared with the 

TOD signal system (Stevanovic & Zlatkovic, 2013). They found improvement in travel time in the AM 

peak, midday peak, and PM peak, while the most considerable difference between the TOD-based traffic 

signal and ASCS was observed at the midday peak. Hu et al. evaluated the operational effectiveness of 

InSync, a type of ASCS, for six corridors in Virginia (Hu et al., 2016). The authors found that InSync 

reduced the mainline delay by 25% and improved the travel time reliability by 16%. 

So et al. evaluated the operational effectiveness of SynchroGreen, another type of ASCS, for one 

corridor in Florida (So et al., 2014). The authors found that SynchroGreen was able to reduce travel times 

from 2.4 % to 8.6 %. Benekohal et al. evaluated SynchroGreen on a corridor in Illinois with six 

intersections (Benekohal et al., 2019). Based on the evaluation of operational performance in terms of 

traffic volume, intersection delays, and queue length for each lane group, they found that for 41% of the 

lane groups, SynchroGreen improved the operational performance; for 30% of the lane groups, 

SynchroGreen did not change the operational performance; and for 29% of the lane groups, SynchroGreen 

reduced the operational performance . 

Shelby et al. evaluated the operational performance of Adaptive Control System Lite (ACS-Lite) 

through simulation and field tests (Shelby et al., 2008). The field tests were performed at different 

locations throughout the United States (i.e., Ohio, Texas, Florida, and California). The authors found up 

to 35% improvement in the number of stops, travel time, delay, and fuel consumption in their field tests 

compared to non-ASCS intersections. Ban et al. evaluated Adaptive Control System Lite (ACS-Lite) on 

Wolf Road in Albany, New York, which was a heavily congested urban corridor (Ban et al., 2014). They 

found that ACS-Lite software was able to improve traffic flow in terms of decreasing travel time slightly 

within its own system, except for one intersection at the boundary of the ACS-Lite deployed corridor. In 

another study, Gettman et al. evaluated ACS-Lite through field testing at five intersections in Arizona 

(Gettman et al., 2013). The authors found that at some intersections, ACS-Lite performed well in terms 

of improving travel time and reliability, whereas at some intersections, the coordinated TOD-based 



 7 

systems performed better. Smith et al. evaluated the operational performance of Scalable Urban Traffic 

Control (SURTRAC), another type of ASCS, through pilot deployment at nine intersections in Pittsburg, 

Pennsylvania (Smith et al., 2013). The authors found that SURTRAC improved traffic flow efficiency in 

terms of the number of stops, travel time, speed, wait time, and emission by 20-40%. 

In a recent study, Khattak et al. evaluated the operational impacts of SURTRAC, another type of 

ASCS, which was deployed in 23 intersections of Pittsburgh, Pennsylvania (Khattak et al., 2020). They 

found that SURTRAC was effective in reducing travel time during AM and PM peak periods in the 

westbound direction on Baum Blvd and Centre Avenue. In Baum Blvd, speed was improved by 

SURTRAC during midday in the eastbound and during AM and PM peaks in the westbound. In Center 

Avenue also, speed was improved by SURTRAC in the westbound. 

Table 2 presents a summary of the evaluation studies, including our study, which is shaded in grey 

color. Most of these studies did not compare the performance of ASCS deployed on multiple corridors 

throughout a state, as shown in Table 2. Additionally, these studies did not evaluate the consistency of the 

operational effectiveness of ASCS in both directions of a corridor, which has been evaluated in this study. 

Our study includes both these evaluations for ASCS, which will provide a more comprehensive 

assessment of the operational impacts of ASCS.   

Table 2 Evaluation studies of ASCS 

Type of 

ASCS 
Area 

Number of 

corridors 

Number of 

intersections 
Evaluation metrics Authors 

SCATS 

 

Utah  2 14 

Travel time, number of 

stops, and intersection 

stopped delay 

Kergaye et al. 

(Kergaye et al., 2009) 

Nevada 1 10 
Travel time, number of 

stops 

Tian et al. (Tian et al., 

2011) 

Georgia 3 15 
Speed, travel time, and 

intersection delay 

Hunter et al. (Hunter et 

al., 2012) 

InSync 

 

Missouri 

 

 

 

 

 

1 12 

Travel time, number of 

stops, average speed, 

delay along a corridor, 

stopped time, congested 

time, fuel consumption, 

and emissions 

Hutton et al. (Hutton et 

al., 2010) 

New York 1 9 

Travel time, the number 

of stops, average speed, 

delay, fuel 

consumption, and 

emissions 

Elkins and Niehus 

(Elkins & Niehus, 

2012)  

Florida 1 12 

Travel time, number of 

stops, and intersection 

delays 

Stevanovic and 

Zlatkovic (Stevanovic 

& Zlatkovic, 2013)  
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Type of 

ASCS 
Area 

Number of 

corridors 

Number of 

intersections 
Evaluation metrics Authors 

Virginia 6 62 

Main road delay 

reductions, 95th 

percentile travel time, 

and buffer index 

Hu et al. (Hu et al., 

2016) 

SynchroGreen 

Florida 1 9 

Travel time, spot speed, 

and vehicle occupancy 

rate 

So et al. (So et al., 

2014) 

Illinois 1 6 

Traffic volume, 

intersection delays, and 

queue length 

Benekohal et al. 

(Benekohal et al., 

2019) 

South Carolina 11 102 

Mainline travel time 

and travel time 

reliability during 24 h 

of a day and during 

peak periods, direction-

wise consistency of 

ASCS effectiveness in 

travel time reduction, 

and travel time 

reliability improvement 

Chowdhury et al. (this 

study) 

ACS-Lite 

Ohio, Texas, Florida, 

and California 
NA* 

9 (Ohio), 

8 (Texas), 

8 (Florida),  

10 

(California) 

Travel time, delay time, 

number of stops, fuel 

consumption 

Shelby et al. (Shelby et 

al., 2008) 

Arizona 2 5 

Green occupancy ratio 

(i.e., detector 

occupancy of the green 

phase divided by the 

total available green 

time in a phase split), 

percent arrivals on 

green (i.e., percent of 

vehicles arriving on the 

green phase  of the total 

number of  vehicles 

arriving on the red 

phase), travel time, and 

travel time reliability 

Gettman et al. 

(Gettman et al., 2013) 

New York 1 9 

Intersection delay, 

queue length, travel 

time, average speed, the 

number of stops, 

Ban et al. (Ban et al., 

2014) 
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Type of 

ASCS 
Area 

Number of 

corridors 

Number of 

intersections 
Evaluation metrics Authors 

emission, and fuel 

consumption 

SURTRAC 

Pennsylvania 2 9 

Travel time, number of 

stops, speed, wait time, 

fuel consumption, and 

emissions 

Smith et al. (Smith et 

al., 2013) 

Pennsylvania 2 23 

Main street travel time 

and speed, the number 

of stops, side street 

speed and travel time, 

travel time reliability, 

volatility in speed, and 

acceleration/ 

deceleration 

Kattak et al. (Khattak 

et al., 2020) 

*NA=not available 
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CHAPTER 3 SURVEY 
 

3.1 Introduction 

The online survey distributed to the state Departments of Transportation (DOTs) was divided into 

two parts to encourage more participation. The overall purpose of the survey was to understand the 

perspectives of the state and local public agencies, who make decisions regarding the implementation of 

ASCS, as well as results over time, through operational studies conducted by the public agencies. 

 Part I of the survey was distributed nationally through SCDOT’s network of contacts to each of 

the 50 states’ Departments of Transportation. This top-level survey was intended to gather a brief overview 

at the state level of ASCS testing and deployment. Twenty-eight states (i.e., 56%) responded to part one 

of the surveys. The intent of part one was to establish which states had experimented with or installed 

ASCS. Based on this information, the states were asked to identify the current state of ASCS in their state. 

The states that responded are highlighted in Figure 2 in green.  

The second part of the survey included a follow-up, which was distributed to a list of 28 contacts 

gathered in part one of the survey to the state DOTs. This survey went into greater detail to examine what 

each governance had considered when deploying ASCS. The survey was intended to be answered by city 

and county personnel who work with ASCS daily and in a more hands-on environment. The detailed 

questions were designed to be answered by someone with plentiful first-hand experience studying, 

operating, and evaluating ASCS in their jurisdiction. The findings of the survey are summarized in the 

following subsections (Brunk et al., 2019). 

 

Figure 2 Survey part I responding states 

3.2 Current ASCS Deployment  

Fourteen states responded that their ASCS system is fully deployed and active. Three states at one 

point had deployed ASCS and then removed it. Two states indicated they had tested but never deployed 

ASCS and four states intend to deploy ASCS soon. Five of the respondents indicated that their state has 
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neither tested nor deployed ASCS. The primary reason indicated by the four of the seven states that have 

not deployed ASCS was "insufficient benefits" based on their testing and study. The second most common 

reason selected by the two states was "insufficient manpower." ASCS is expensive concerning up-front 

costs in the form of installation. Therefore, it is logical that many states would feel there were insufficient 

benefits to justify the cost, especially with a limited annual budget and ambiguity for future funding.  

As seen in Figure 3, the majority of states with the current or future deployment of ASCS have or 

will have 20 or more intersections with ASCS.  

 

Figure 3 Number of intersections with ASCS 

As expected, the primary reason for which the states surveyed in this study chose to install ASCS 

was the operational benefits. Since the operational benefits of ASCS have been widely studied and 

published, it makes sense that the primary justification for the cost is improved travel time and decreased 

the number of stops. Nineteen of 28 states selected this. The second most selected positive aspect was the 

safety benefits, which are selected by 10 states.  

Of the 28 states that responded to the survey, most (i.e., 52.4%) currently run InSync. The second 

most adopted system is SynchroGreen, selected by eight of the 28 respondents. These were closely 

followed by SCATS and ACS Lite, each operating in five states. Others mentioned included Intelight (2), 

SCOOT (2), and MAXAdapt (3), and one each for RHODES, OPAC, Centracs. Some states run more 

than one system because it is often the case that a city or county will make its own decision on which 

system to run in their jurisdiction, which can vary within a state. The selection of ASCS largely depends 

on the cost and customer service availability while maintaining the ASCS.   

For those states that indicated they had not deployed ASCS or had removed ASCS, the survey 

included a question about the challenges preventing the state from deploying ASCS. The primary reason, 

as indicated by four of the seven states that answered this survey question, stated that they found 

insufficient benefits when considering ASCS for their state. The second most common answer was 

48%

19%

9%

24%

In your state, how many intersections currently 

have (or will have) ASCS deployed?

Less than 20

Between 20 and 50

Between 50 and 100

More than 100
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insufficient manpower, indicated by two states. One state that responded that they had neither tested nor 

deployed ASCS and also specified that their current infrastructure needs to be updated, and their 

exploration of the available technology led them to select advanced traffic signal performance measures 

to see if this improves their operations. This state also disclosed that they do not yet have the 

communication network to deploy ASCS.  

Another state responded that upon testing ASCS, they decided to use different software that will 

collect high-resolution data to optimize current signal timing. This state cited prohibitive upfront costs 

based on the benefits they believed possible for statewide deployment as contributing to this decision. 

Seven respondents from three states responded to part two of the follow-up survey. Five 

respondents represent South Carolina, two engineers responded from Michigan, and one engineer 

responded from Wyoming. Four of the respondents were from the State DOTs, two from county agencies, 

and one from a city agency. It is worth noting that one additional state contact responded outside the 

survey, via email, that a city in their state is in the process of conducting a Before and After Study of both 

operational and safety benefits. However, as their research project is currently underway and incomplete, 

they felt uncomfortable completing the survey at this time.  

3.3 ASCS Impact Assessment Findings 

Each of the survey respondents was asked to identify how many corridors are in their jurisdiction. 

However, for the survey, they were asked only to answer questions regarding one corridor at a time. Four 

of the eight respondents indicated that they had not conducted any safety or operational study on their 

ASCS corridors. As such, the remaining four states responded to the next set of questions, identifying four 

corridors for study.  

These four corridors ranged from six to 19 intersections per corridor. Two of the four corridors 

run InSync, one runs SynchroGreen, and one runs MaxAdapt and Intelight. Before the installation of 

ASCS, two of the corridors had a Fixed-Time Coordinated plan, and two had Actuated Coordinated plans. 

All four of the corridors in this survey are arterial networks.   

When evaluating the impacts of ASCS, the results of any operational or safety study could be 

skewed by other changes made to the corridors during or around the same time that the signal system was 

changed. To account for this, one survey question asked the respondents to identify what alterations had 

been made along their route. Along two corridors, a flashing yellow arrow was installed. Two corridors 

implemented new access management strategies. One corridor’s lanes were widened. While the specific 

effects of these additional measures have not been accounted for in this survey, the data can be used to 

follow up in future studies regarding the effect of potential benefits when combining ASCS and additional 

operational improvements.  

None of the four corridors have been studied from a safety perspective. Furthermore, only one 

respondent indicated a desire to conduct such a study in the future. The other three cited justifications of 

insufficient manpower, data, funding, or low prioritization as the reasons for not pursuing a safety study. 

In a similar vein, none of the four corridors were selected for benefit-cost analysis.  
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3.4 ASCS Corridor Applicability 

The final section of the survey gathered the opinions of the four respondents regarding the best fit 

for ASCS in various corridors. While this data is based purely on experience and opinion, it serves as a 

direction for future study. While each of the four respondents identifies ASCS as "expensive," the range 

of price is $40,000/intersection or less and is broken down in Figure 4. The respondents to the corridor-

specific study paid less per-intersection in installation costs than the average cost in the NCHRP Report, 

which had an average of $65,000/intersection. 

 

Figure 4 Per-intersection ASCS installation cost 

Three of the four respondents indicated that expected performance had been sustained since 

installation. One respondent does not yet have enough data to evaluate the sustained performance. Of the 

four respondents, two felt that ASCS works best in an Average Annual Daily Traffic (AADT) volume 

range of 30,000-50,000 vehicles/day. One believed ASCS works best in a low AADT volume of fewer 

than 10,000 vehicles/day, and one holds the opinion that somewhere between 10,000 and 30,000 

vehicles/day is the best volume for operations of ASCS. The survey also asked the respondents to address 

the design speed and operational efficiency of ASCS. The results of this question can be seen in Figure 5.  

 

Figure 5 Design speed for ASCS operational efficiency 

What is the per-intersection installation cost of 

ASCS?

Less than $20,000

$20,000-$30,000

$30,000-$40,000

$40,000-$50,000

Greater than $50,000

In your experience, for what design speed does 

ASCS operate best?

< 30 mph

30-45 mph

45 mph or higher

No opinion
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Most responses indicated that ASCS works best in the morning off-peak period. The afternoon 

peak and off-peak hold the second rank, receiving an equal number of votes. The breakdown of answers 

to this survey question can be found in Figure 6.  

 

Figure 6 Time of day for ASCS operational efficiency 

Due to the limited number of responses to this survey, it is challenging to draw any confident 

conclusions for the best fit of corridor type for ASCS. The conclusions of most of the respondents, when 

indicating their opinion, is limited because their experience is limited. However, as previously mentioned, 

these opinions do provide direction for our future research and serve as a jumping-off point. Though 

previous studies have found specific times of day to have varying results with ASCS, the sporadic opinions 

in time of day in which ASCS operates the best prove that further study of this parameter is necessary. 

Table 3 summarizes the detailed responses contributed by four of the survey respondents. Each of 

the cities or counties that indicated that they have planned or will conduct an operational study in the 

future has chosen to implement ASCS on an arterial corridor. Two of the four previously ran Actuated 

Coordinated signals, and two had Fixed Time signals. Three of the four have noticed sustained 

performance in their systems, and one plans to evaluate the performance of ASCS in the future.  

 

 

 

 

 

 

 

23%

22%

22%

11%

11%

11%

In your experience, for what time of day does ASCS 

operate best?

Morning Off-Peak

Afternoon Off-Peak

Afternoon Peak

Weekend Off-Peak

Transitional Times

(between peaks)

Morning Peak
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Table 3 Summary of corridor specific survey responses 

Corridor 
Number of 

intersections 

Corridor 

type 

Previous 

traffic 

signal 

system 

Date 

last 

retimed 

ASCS type 

installed 

Operational 

or safety 

study 

conducted 

Performance 

sustained 

A 19 Arterial 
Actuated 

Coordinated 
1/1/11 SynchroGreen 

Operational – 

Before & 

After 

Yes 

B 7 Arterial 
Actuated 

Coordinated 
4/1/11 

Intelight 

MaxAdapt 

None, but 

expect to 

conduct both 

safety and 

operational in 

the future 

No data yet 

C 6 Arterial 
Fixed Time 

Coordinated 
1/1/09 InSync Operational Yes 

D 7 Arterial 
Fixed Time 

Coordinated 
1/1/08 InSync None Yes 

 

3.5 Chapter Conclusions 

Based on the results of the survey, it is clear that many states and public agencies continue to 

express interest in implementing or experimenting with ASCS. The initial survey response of 28 out of 50 

states indicates an overall familiarity with or interest in the technology and the possibility of implementing 

ASCS in their states. Almost three-quarters of the state respondents to the survey have experimented with 

ASCS, and over half have maintained their systems over the years. 

For many respondents, the deployment of ASCS was based on the operational benefits and safety 

benefits of ASCS. However, the lack of resources allocated to their agencies has hindered their ability to 

evaluate ASCS along corridors in their jurisdictions. Increasing these resources to devote to the study of 

traffic signal performance is necessary to improve the current state of the practice. The opportunity for 

improved operational performance is excellent, especially in a future that is sure to contain more connected 

and data-driven environments. ASCS is a useful application that should continue to be explored and 

developed to best suit the needs of users of the road.  

It is important to note that the respondents to the survey provided different answers to many of the 

questions. Some of this can be attributed to the multitude of Adaptive Signal Control System options as 

well as the differences between states/cities/jurisdictions and corridor types where implemented. These 

differences between corridors as well as cities and counties resulted in a different experience in each. 

Thus, evaluation on a case by case basis will help to build the knowledge base for all those stakeholders 

with interest in improving roadways. 
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CHAPTER 4 CRASH FREQUENCY STUDY 
 

4.1 Introduction 

EB method has been used for the safety evaluation previously in before-and-after studies (Hovey 

et al., 2010; Hovey & Chowdhury, 2005). The research team implement different models into the ASCS 

safety evaluation and investigate how different crash prediction models impact the estimator of the safety 

effectiveness of ASCS in the EB and Fully Bayesian (FB) before-and-after studies. A series of EB and FB 

models are compared and evaluated. An FB model that accounts for traffic volume, roadway geometric 

features, year factor, and spatial effects is deemed as the best model. The research team evaluated the 

safety effectiveness of ASCS in terms of reducing the crash frequency at 11 ASCS corridors with a total 

of 109 signalized intersections located throughout South Carolina. ASCS effect may vary across sites due 

to specific features of the sites that are deployed with ASCS. To explore the variations in ASCS effect 

across sites, the research team evaluates the safety effectiveness of ASCS for different corridors and 

intersections.  

4.2 Method 

This section firstly discusses model forms in the development of crash prediction models in the 

EB and FB before-and-after study procedures (Jin et al., 2020). Then, this section provides a validation 

procedure that uses two criteria to validate possible models: 1) the potential bias and variance of 

prediction, and 2) the estimation accuracy of safety effectiveness. Lastly, this section discusses an 

approach to investigate the variation of ASCS safety effects.  

4.2.1 Model Development and Evaluation Procedure 

This subsection introduces the models that will be incorporated into the EB and FB before-and-

after study procedures. Traffic volume, roadway geometric features (e.g., the number of access points at 

an intersection, and the number of exclusive left-turn lanes, right-turn lanes, and through lanes on major 

or minor streets), year factor, and spatial effect are used to produce different sets of the models. For each 

model, four crash types of interest are accounted for: total crash, Fatal and Injury (F+I) crash, rear-end 

crash, and angle crash. Two primary forms of models, Poisson-Gamma and Poisson-Lognormal, are 

introduced. A spatial model is also used with a Poisson-Lognormal model in this study to account for the 

spatial effect existing in the investigated sites. Model 1, Model 2, and Model 3 are implemented within 

the EB framework. Model 4A, Model 4B, Model 5A, Model 5B, Model 6A, and Model 6B are 

implemented within the FB framework. EB and FB model development and estimation and EB and FB 

before-and-after evaluation procedure are detailed in APPENDIX A-2.  

EB Model Development 

A general Poisson-Gamma model with two tiers is expressed as the following:  

 , ,~ ( )m it m ity Poisson    (1)    

 , ~ ( , )m it Gamma     (2)  
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where, ,m ity is the observed crash frequency at an intersection i  (i.e., 1,2,...,109i = for a total of 

109 intersections considered in this study) on the corridor m (i.e., 1,2,...,11m = for a total of 11 corridors 

considered in this study) in a given year t (i.e., 2011,2012,...,2019t = ); ,m it is the Poisson mean. The 

expectation of ,m it , ,( )m itE   is the expected yearly number of crashes at an intersection i  on the corridor 

m  in the year t  for a specified crash type (i.e., total crash, F+I crash, rear-end crash, or angle crash). 

is the shape parameter of Gamma distribution, and   is the inverse scale parameter (i.e., rate parameter) 

of the Gamma distribution.  

Three crash prediction models (i.e., Safety Performance Function (SPF) in the EB framework) are 

specified in terms of different explanatory variables. Model 1 and Model 2 account for the year factor by 

introducing annual multipliers.  The year factor is often introduced into the crash prediction model to 

account for temporal variation of crash expectation, which accounts for possible unobserved factors such 

as weather conditions, road conditions, and vehicle technology improvements (Persaud et al., 2010). 

Model 3 accounts for the year factor by introducing the year variable as one of the explanatory variables 

in the model. Model 1 includes an annual multiplier, and Annual Average Daily Traffic (AADT) without 

considering the difference in roadway geometric features. Model 2 includes an annual multiplier, AADT, 

and roadway geometric features. Model 3 includes AADT, roadway geometric features, and the year 

factor.  

FB Model Development 

A general Poisson-Lognormal model is introduced with multiple hierarchical levels in the 

following:  

 , ,~ ( )m it m ity Poisson    (3) 

 
, , , ,

0

log( )
p

m it mj B mj it m it

j

B  
=

= +   (4) 

 2

, ~ (0, )m it Normal     (5) 

 2

, ,~ (0, )mj B jNormal     (6) 

where, ,m ity is the observed crash frequency at the intersection i  on the corridor m  in a given year 

t; ,m it is the Poisson mean. ,mj itB is the explanatory variable in the model. ,mj B is the thj  coefficient for 

the explanatory variable in the model. P  is the total number of explanatory variables. The distribution of 

parameters such as ,m it , ,mj B  , and ,m it in the model is evaluated based on the estimation of the posterior 

distribution of these parameters using the FB approach. In the FB models, ,m it  is the site-specific expected 

crash frequency, and each ,m it  represents a model parameter. ,m it  is introduced to account for the 

variation across intersections and years. 2

  is assumed to follow a prior Inverse-Gamma (0.001, 0.001) 

distribution for all models based on previous studies (Cai et al., 2018; Carriquiry & Pawlovich, 2004; 
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Sacchi & Sayed, 2014). 2

, j  is set to 1000 for all the prior distributions of ,mj B  for all models resulting 

in a non-informative prior distribution for ,mj B  (Persaud et al., 2010). Consequently, estimation of the 

posterior distribution of ,mj B  largely depends on observed data.  

Three FB non-spatial models are defined in terms of different explanatory variables. Model 4A 

and Model 5A introduce a random effect to account for variation caused by the various intersections and 

years, while Model 6A directly treats the year factor as a covariate in the model. Based on the inclusion 

of the spatial effect into the models, three different FB spatial models-Model 4B, Model 5B, and Model 

6B are developed.  

4.2.2 Validation of the Before-and-after Evaluation Methods 

This subsection provides a validation procedure that uses two criteria to validate EB and FB 

models: 1) the potential bias and variance of prediction, and 2) the estimation accuracy of safety 

effectiveness. In this way, EB and FB models are compared using the same criteria adopted in this study.  

Evaluation of Potential Bias and Variance of Prediction 

Root Mean Square Error (RMSE) is used to compare the potential bias and variance of prediction 

among different models. RMSE is also used to measure the quality of an estimator and represent the model 

prediction error and the model goodness of fit. A lower value of RMSE indicates a smaller difference 

between the estimated value and the actual observed crash frequency for non-ASCS intersections. The 

equation is shown below: 

 

( )
2

1 1

N T

it it

i t

E O

RMSE
NT

= =

−

=


   (7) 

where, itE is the expected number of the crashes of non-ASCS intersections in an intersection i  in 

the year t ; itO  is the observed crashes of non-ASCS intersections in an intersection i  in the year t ; N  is 

the total number of non-ASCS intersections used for validation; T is the total number of years.   

In the EB procedure, the expected number of crashes in the subsequent years for a specific 

intersection can be estimated by multiplying a correction factor due to the difference between the 

subsequent years and the predecessor year by the expected number of crashes in the predecessor years. 

For example, the estimated crash in 2012 for an intersection can be obtained by multiplying the correction 

factor due to the difference between 2011 and 2012 by the expected number of crashes in 2011. Likewise, 

the estimated crash frequency in 2013, 2014, 2015, 2016, and 2017 can be predicted in this way. In the 

FB procedure, the expected number of crashes for a specific intersection each year can be estimated 

directly by the Markov Chain Monte Carlo (MCMC) simulation. 
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Estimation of Safety Effectiveness of Non-ASCS Intersections 

To evaluate the performance of the candidate models in estimating the safety effectiveness of 

ASCS, the research team computes and compares the safety effectiveness of ASCS for non-ASCS 

intersections among different models since no ASCS effect exists for the non-ASCS intersections. Thus, 

crash reduction percentage for the non-ASCS intersections (i.e., zero) can be deemed as the ground truth. 

In the EB procedure, the null hypothesis is that the crash reduction percentage is equal to zero, and the 

alternative hypothesis is that the crash reduction percentage is not equal to zero. In the FB procedure, the 

significance of the crash reduction percentage is determined if the 95% Bayesian Credible Intervals (BCI) 

does not contain zero. To calculate the crash reduction percentage for the non-ASCS intersections, the 

research team assumes that 2011-2014 is the “before period”; 2015-2017 is the “after period” used for 

creating a case evaluating the safety effects for the non-ASCS intersections for both EB and FB procedure.  

4.2.3 Investigation of Variation of ASCS Safety Effects  

ASCS safety effects could vary across different intersections with different features. The 

evaluation results of the safety effectiveness of ASCS are analyzed based on different AADT groups, 

geometric features, and speed limits of intersections. The evaluation results are aggregated by three groups 

of AADT at major roads: AADT <= 20,000 vehicles/day, 20,000 vehicles/day <AADT <= 50,000 

vehicles/day, and AADT>50,000 vehicles/day. This grouping of AADT is in line with a previous study 

(Khattak et al., 2019). The evaluation results are aggregated by two groups based on the number of legs 

at an intersection (i.e., three-legged or four-legged intersections). The evaluation results are aggregated 

by three groups based on different speed limits at major roads: 30 ~ 35 mph, 40 ~ 45 mph, and 50 ~ 55 

mph. A linear regression model is developed to explore the linear relationship between the ASCS safety 

effects and other variables considered in this study (i.e., AADT at minor roads, speed limits at minor 

roads, the number of exclusive left-turn lanes/right-turn lanes/through lanes on major or minor roads, or 

the number of access points at an intersection). 

4.3 Data Description 

SCDOT initially provided the research team with crash data from 2011 to 2018. Later, SCDOT 

provided the research team with crash data for 2019 for the following corridors – US 17 Business, US 

378, Woodruff Rd, Long Point Rd, and Main Street so that the research team can have at least two-year 

after period crash data for all the ASCS corridors. The crash data contain attributes including the crash 

type and AADT on major and minor streets at intersections. The following roadway geometric features 

are also collected from Google Earth: 1) the number of exclusive left-turn lanes, right-turn lanes, and 

through lanes on major or minor streets, and 2) the number of access points within the influence area of 

an intersection. In terms of crash type, crash data are aggregated in four categories: total crashes, F+I 

crashes, rear-end crashes, and angle crashes. In this study, intersection crashes are investigated for 

evaluating the ASCS safety effect. According to SCDOT’s strategy, intersection crashes are those that 

happened within 0.05 miles of the center of the intersection. 

As shown in Table 4, reference crash data (i.e., no ASCS is installed) are obtained from similar 

signalized intersections and corridors (e.g., similar roadway geometrics, the location of proximity, and 
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same functional class of corridors) without ASCS at different locations in South Carolina. The sample 

size of reference crash data is 680 across different years and different signalized intersections. ASCS has 

not been installed in the 24 signalized intersections on the US 29 corridor in Greenville, and the corridor 

could be deemed as a non-ASCS corridor. The crash data of the US 29 corridor from 2011 to 2017 during 

which ASCS is not implemented, are used for validating EB and FB models.  

Initially, the research team obtained 13 corridors that have installed ASCS. Original crash data 

have before period and after period data. Two corridors- SC 19 in Aiken and US 17 in Mount Pleasant 

installed with Insync were removed because before period crash data, including crash data before 2011, 

is not accurate for the crash location. The research team only includes 11 corridors that have at least a 

two-year after period crash data for this study. The location, number of signalized intersections, and 

installation date of these corridors are detailed in Table 5. Safety effects of ASCS are evaluated for 11 

corridors with a total of 109 signalized intersections, installed with SynchroGreen in South Carolina. The 

study crash data pool for safety evaluation excludes crashes that occurred during the ASCS installation 

year to minimize evaluation bias caused by installation before activating ASCS and driver’s adaption to 

the new driving environment with ASCS. 

Table 4 Crash data usage and resource 

Crash data type Crash data resource 

Reference Crash Data 

 

Similar signalized corridors without ASCS (i.e., US 78 in Berkeley, the 

segment of US 17A without ASCS in Berkeley, US 1 in Lexington, SC 6 in 

Lexington, another segment of US 29 without ASCS in Greenville, S-311 in 

Greenville, SC 146 in Greenville, US 17 in Charleston, SC 171 in Charleston, 

SC 61 in Charleston, and US 17 in Horry), and ASCS corridors (i.e., before 

period crash data of SC 642, US 52, US 17, Roper Mt. Rd./Garlington Rd., N. 

Lake Drive, and US 17A) 

Crash Data for Validation of EB and FB 

Models 

Non-ASCS corridor (i.e., US 29) with 24 intersections  

Crash Data for Safety Evaluation for 

ASCS Corridors 

Eleven ASCS corridors with 109 intersections (i.e., crash data of SC 642, US 

52, US 17, Roper Mt Rd./Garlington Rd., N. Lake Drive, US 17A, Long Point 

Rd., US 17 Business, Woodruff Rd., Main Street, and US 378) 

 

Table 5 ASCS corridors used in this study 

Location Corridor Number of signalized 

intersections 

Installation date 

Greenville Roper Mt Rd./ Garlington Rd. 5 November 2016 

Greenville Woodruff Rd. 17 November 2017  

Charleston SC 642 18 June 2015 

US 52 17 October 2016 
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Location Corridor Number of signalized 

intersections 

Installation date 

Pawleys Island US 17 6 February 2016 

Summerville US 17A 12 June 2015 

Garden City/ Surfside US 17 Business 9 March 2017  

Lexington N. Lake Drive 7 December 2015 

Main Street 5 June 2017 

US 378 7 June 2017  

Mount Pleasant Long Point Rd. 6 November 2017  

 

APPENDIX A-1 Table A-1 shows a summary of descriptive statistics of the geometric features of 

intersections and speed limits data. The difference in the geometric features of intersections and speed 

limits between the before and after period is very small.  

APPENDIX A-1 Table A-2 shows descriptive statistics of the intersection crash frequency (i.e., 

number of crashes per year) for the before and after period for the ASCS corridors. The crash frequency 

statistics show that crashes are over-dispersed (i.e., variance greater than mean) in the total crash, F+I, 

rear-end, and angle crash for the ASCS corridors. 

To properly analyze the crash dataset, the research team collected information from SCDOT 

regarding whether any other possible safety improvements, in addition to the ASCS, have been made at 

intersections. Flashing Yellow Arrow (FYA) was installed at some signalized intersections before or after 

the ASCS was installed. The research team considers FYA as one of the explanatory variables of the 

model. A categorical variable is considered to distinguish the effects of different numbers of FYA at the 

intersections on the crash frequency outcomes. It is found that the categorical variable is not significant 

and adding the categorical variable increases the AIC of the model. Thus, the FYA variable is taken out 

of the model since it cannot provide useful information. Offset improvements for left-turn lanes, which 

have the potential to reduce crashes and crash severity at signalized intersections, were made on one 

intersection after the ASCS was installed. To exclude the effect of such safety improvements, crashes that 

occurred during the period after offset improvements were made are not included in the analysis. An 

additional signal phase was added to one signal after the ASCS was installed, so the crashes that occurred 

during the period after such changes were made are not included in the analysis as well. 
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4.4 Results 

This section presents the corridor-specific and intersection-specific evaluation results.  

4.4.1 Corridor-specific Evaluation Results 

Based on the comparison results between the FB and EB models shown in APPENDIX A-3, a FB 

model (Model 6B) that includes AADT, roadway, year factor, and spatial effect, performs best among all 

models. Eleven ASCS corridors at different locations in South Carolina are evaluated using Model 6B.  

Positive signs of values shown in the orange highlighted cells in Table 6 indicate crash increases, 

while negative signs of values shown in the green highlighted cells indicate crash reductions. The 95% 

BCI of each model is shown in parentheses in Table 6. The ASCS shows crash reductions for most 

corridors for different crash types.  

As shown in Table 6, 10 out of 11 ASCS corridors show the F+I crash reduction due to ASCS. For 

US 52, ASCS shows a crash increase in F+I, possibly because US 52 has the highest traffic volume among 

these corridors, leading to higher crash severity. 

Nine out of 11 ASCS corridors show the angle crash reduction due to ASCS. ASCS shows an 

increase in angle crashes for US 17A and Woodruff Rd.  For Woodruff Rd., there was construction in I-

385, which intersects Woodruff Rd. For US 17A, there was land development near the Sigma Dr./US 17A 

intersection. 

For rear-end crashes, four corridors (i.e., US 52, N. Lake Drive, Woodruff Rd., and US 17A) show 

ASCS increases in rear-end crashes, possibly because traffic demands at side streets are relatively high, 

which may interrupt the major traffic flow. The interruption may lead to more stops, and more stops may 

lead to more rear-end crashes.  
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Table 6 Corridor-specific safety effect estimation 

Corridor Name 

Crash change percentage (95% BCI)  

Total crash F+I Rear-end Angle  

SC 642 
-32.2%*  

(-45.0% ~ -17.4%) 

-16.3% 

 (-36.7% ~ 8.5%) 

-16.7%  

(-34.3% ~ 5.1%) 

-41.7 %* 

 (-55.8% ~ -24.8%) 

Roper Mt. Rd./ 

Garlington Rd. 

-41.1 %*  

(-64.9% ~ -8.1%) 

-73.7%*  

(-88.7% ~ -52.6%) 

-3.4%  

(-45.5% ~ 54.3%) 

-92.0%*  

(-99.4% ~ -75.3%) 

US 17 
-49.8%* 

 (-66.8% ~ -27.2%) 

-46.7%*  

(-68.2% ~ -16.3%) 

-39.4%*  

(-61.1% ~ -9.8%) 

-57.4%* 

 (-73.3% ~ -35.2%) 

US 52 
-4.6%  

(-25.7% ~ 20.8%) 

+16.2%  

(-15.7% ~ 55.9%) 

+0.4% 

 (-24.4% ~ 30.5%) 

-15.6%  

(-37.8% ~ 11.8%) 

N. Lake Drive 
-6.5%  

(-31.2% ~ 24.4%) 

-26.8%  

(-52.1% ~ 6.4%) 

+3.2%  

(-25.8% ~ 39.5%) 

-28.0% 

 (-51.0% ~ 1.8%) 

US 17A 
+19.7%  

(-5.7% ~ 19.8%) 

-31.8%*  

(-49.8% ~ -10.0%) 

+17.1% 

 (-9.7% ~ 49.4%) 

+10.8%  

(-15.4% ~ 42.8%) 

Woodruff Rd. 
+2.8%  

(-8.2% ~ 13.9%) 

-19.6%* 

(-34.2% ~ -3.6%) 

+4.6% 

(-7.9% ~ 17.9%) 

+1.7% 

(-13.1% ~ 17.8%) 

Long Point Rd. 
-35.9%* 

(-7.0% ~ -57.5%) 

-56.7%* 

(-31.0% ~ -74.8%) 

-31.1%  

(-57.0% ~ 4.5%) 

-27.9% 

(-57.0% ~ 13.4%) 

US 17 Business 
-61.4%* 

(-72.6% ~ -47.4%) 

-63.8%* 

(-77.1% ~ -45.9%) 

-59.9%* 

(-72.4% ~ -43.8%) 

-51.3%* 

(-67.9% ~ -29.2%) 

Main Street 
-32.2%* 

(-55.9% ~ -0.1%) 

-60.7%* 

(-77.7% ~ -36.2%) 

-16.4% 

(-47.5% ~ 26.7%) 

-54.9%*  

(-72.9% ~ -29.2%) 

US 378 
- 27.8% 

(-50.5% ~ 1.6%) 

-63.5%* 

(-78.7% ~ -42.3%) 

-9.1% 

(-39.0% ~ 30.1%) 

-62.5%* 

(-78.5% ~ -39.9%) 

*: statistically significant in terms of 95% BCI 

4.4.2 Intersection-specific Evaluation Results 

The safety effectiveness of ASCS is also evaluated for different intersections. As shown in Figure 

7, a negative value means that ASCS reduces crashes. The figure shows that most of the intersections with 

ASCS show crash reductions for the total crash, F+I crash, and angle crash. The ASCS decreases rear-end 

crashes for 55 out of 109 intersections.  
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Figure 7 Percent change of crashes due to ASCS at each intersection for different crash types 

The evaluation results are aggregated by three groups of AADT at major roads: AADT Group 1 

with AADT less than or equal to 20,000 vehicles/day (sample size = 19), AADT Group 2 with AADT 

between 20,000 vehicles/day and 50,000 vehicles/day (sample size = 87), and AADT Group 3 with AADT 

greater than 50,000 vehicles/day (sample size = 3). This grouping of AADT is in line with a previous 

study (Khattak et al., 2019). As shown in Figure 8(a), changes in total crashes due to the ASCS are 

different between AADT Group 1 and Group 2. The changes are statistically different between AADT 

Group 1 and Group 2 based on the Analysis of Variance (ANOVA) analysis, suggesting that intersections 

with AADT between 20,000 vehicles/day and 50,000 vehicles/day at major roads achieve higher safety 

benefit compared to intersections with AADT less than or equal to 20,000 vehicles/day. Changes in total 

crashes due to the ASCS are not statistically different between AADT Group 1 and Group 3 and between 

AADT Group 2 and Group 3.  

As shown in Figure 8(b), changes in F+I crashes due to the ASCS are different between AADT 

Group 1 and Group 3 and between AADT Group 2 and Group 3. The changes are statistically different 

between AADT Group 1 and Group 3 and between AADT Group 2 and Group 3 based on the ANOVA 

analysis, suggesting that intersections with AADT less than or equal to 50,000 vehicles/day achieve higher 

safety benefit compared to intersections with AADT greater than 50,000 vehicles/day. The possible reason 

could be that higher traffic volume may be associated with more severe crashes. Changes in F+I crashes 

due to the ASCS are not statistically different between AADT Group 1 and Group 2.  
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As shown in Figure 8(c), changes in rear-end crashes due to the ASCS are different between AADT 

Group 1 and Group 2. The changes are statistically different between AADT Group 1 and Group 2 based 

on the ANOVA analysis, suggesting that intersections with AADT between 20,000 vehicles/day and 

50,000 vehicles/day achieve higher safety benefit compared to intersections with AADT less than or equal 

to 20,000 vehicles/day. Changes in rear-end crashes due to the ASCS are not statistically different between 

AADT Group 1 and Group 3 and between AADT Group 2 and Group 3.  

As shown in Figure 8(d), changes in angle crashes due to the ASCS are similar for AADT Group 

1, Group 2, and Group 3. The changes are not statistically different between AADT Group 1, Group 2, 

and Group 3 based on the ANOVA analysis.  

Based on the above analysis, it is concluded that intersections with AADT at a major road between 

20,000 and 50,000 vehicles/day achieve higher safety benefits after deploying ASCS. 

 

Figure 8 Evaluation results aggregated by AADT of major roads 

*AADT Group 1 (sample size = 19): AADT <= 20,000 vehicles/day; AADT Group 2 (sample size = 87): 20,000 vehicles/day 

<AADT <= 50,000 vehicles/day; AADT Group 3 (sample size =3): AADT>50,000 vehicles/day 

The evaluation results are aggregated by two groups based on the number of legs at an intersection, 

i.e., T-intersections (sample size = 29) and four-legged intersections (sample size = 80). As shown in 

Figure 9(a), (b), (c), and (d), for the total crash, F+I crash, rear-end crash, and angle crash, crash changes 

due to the ASCS are similar for both four-legged intersections and T-intersections. The changes are not 

statistically different between four-legged intersections and T-intersections based on the t-test results.  

Based on the above analysis, it is concluded that intersections have the same ASCS safety benefit 

regardless of four-legged intersections or T-intersections. 
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Figure 9 Evaluation results aggregated by number of legs at an intersection 

Additionally, the evaluation results are aggregated by three groups based on different speed limits 

at major roads: Speed Group 1 with 30 ~ 35 mph, Speed Group 2 with 40 ~ 45 mph, Speed Group 3 with 

50 ~ 55 mph. As shown in Figure 10(a), changes in total crashes due to the ASCS are different between 

Speed Group 1 and Group 2 and between Speed Group 1 and Group 3. The changes are statistically 

different between Speed Group 1 and Group 2 and between Speed Group 1 and Group 3 based on the 

ANOVA analysis, suggesting that intersections with a speed limit of 40 ~ 45 mph and 50 ~ 55 mph at 

major roads achieve higher safety benefit compared to intersections with a speed limit of 30 ~ 35 mph at 

major roads. Changes in total crashes due to the ASCS are not statistically different between Speed Group 

2 and Group 3. 

As shown in Figure 10(b), changes in F+I crashes due to the ASCS are statistically different 

between Speed Group 1 and Group 2. The changes are statistically different between Speed Group 1 and 

Group 2 based on the ANOVA analysis, suggesting that intersections with a speed limit of 30 ~ 35 mph 

at major roads achieve higher safety benefit compared to intersections with a speed limit of 40 ~ 45 mph 

at major roads. It is expected that the higher average speed may be associated with higher severe crashes. 

Changes in F+I crashes due to the ASCS are not statistically different between Speed Group 1 and Group 

3 and between Speed Group 2 and Group 3. 

As shown in Figure 10(c), changes in rear-end crashes due to the ASCS are different between 

Speed Group 1 and Group 2 and between Speed Group 1 and Group 3. The changes are statistically 

different between Speed Group 1 and Group 2 and between Speed Group 1 and Group 3 based on the 

ANOVA analysis, suggesting that intersections with a speed limit of 40 ~ 45 mph and 50 ~ 55 mph at 

major roads achieve higher safety benefit compared to intersections with a speed limit of 30 ~ 35 mph at 

major roads. It is expected that the higher average speed leads to fewer stops, thus reducing the rear-end 
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crashes. Changes in rear-end crashes due to the ASCS are not statistically different between Speed Group 

2 and Group 3. 

As shown in Figure 10(d), changes in angle crashes due to the ASCS are different between Speed 

Group 1 and Group 3 and between Speed Group 2 and Group 3. The changes are statistically different 

between Speed Group 1 and Group 3 and between Speed Group 2 and Group 3 based on the ANOVA 

analysis, suggesting that intersections with a speed limit of 50 ~ 55 mph at major roads achieve higher 

safety benefit compared to intersections with a speed limit of 30 ~ 35 mph and 40 ~ 45 mph at major 

roads. It is expected that the higher average speed leads to fewer stops, thus reducing the angle crashes. 

Changes in angle crashes due to the ASCS are not statistically different between Speed Group 1 and Group 

2.  

Based on the above analysis, it is concluded that intersections with a speed limit at a major road 

between 40 to 55 mph achieve higher safety benefits after deploying ASCS. 

 

Figure 10 Evaluation results aggregated by speed limits at major streets 

*Speed Group 1 (sample size = 30): speed limit = 30 ~ 35 mph; Speed Group 2 (sample size = 71): speed limit=40 ~ 45 mph; 

Speed Group 3 (sample size =8): speed limit = 50 ~ 55 mph 

A linear regression model was developed to explore the linear relationship between the ASCS 

safety effects and other variables (i.e., the number of exclusive left-turn lanes/right-turn lanes/through 

lanes on major streets, the number of exclusive left-turn lanes/right-turn lanes/through lanes on minor 

streets, and  the number of access points at an intersection) considered in this study. Based on our analysis, 

for F+I crashes, as the number of through lanes on a major street increases, the ASCS safety benefit 

decreases. A higher number of through lanes on a major street are associated with higher traffic volume, 
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so the ASCS safety benefit decreases with the increasing traffic volume. For the total crash, rear-end crash, 

and the angle crash, there is no linear relationship between the safety effectiveness of the ASCS and the 

number of through lanes on major streets. For the F+I crashes, as the number of access points on minor 

streets increases, the ASCS safety benefit increases. The possible reason could be that the average speed 

of the traffic is lower due to the interruption of traffic from/to the access points, so the severe crashes are 

reduced. For the total crash, rear-end crash, and the angle crash, there is no linear relationship between the 

safety effectiveness of the ASCS and the number of access points on minor streets. 

For all crash types (i.e., total crash, F+I, rear-end crash, and angle crash) considered in this study, 

based on the regression analysis, there is no linear relationship between the safety effectiveness of ASCS 

and AADT of a minor road, the number of the exclusive right-turn lanes on a major street, the number of 

the exclusive left-turn lanes on a major street, the number of through lanes at a minor street, the number 

of the exclusive right-turn lanes on a minor street, the number of the exclusive left-turn lanes on a minor 

street, the number of access points on a major street, and the speed limit at a minor street. 

4.5 Chapter Conclusions 

This study develops a series of models, including the Poisson-Lognormal models, Poisson-Gamma 

models, and spatial models that are implemented in the EB and FB before-and-after studies. Different EB 

and FB models are validated using non-ASCS intersections. It investigates how model variations would 

affect: 1) potential bias (e.g., bias due to regression-to-the-mean, traffic volume changes, and roadway 

geometric feature changes) and variance of prediction, and 2) estimation accuracy of safety effectiveness. 

The findings would provide useful guidance for determining appropriate models for before-and-after 

safety studies. The FB model that accounts for traffic volume, roadway geometric features, year factor, 

and spatial effects shows the best performance in reducing potential bias and variance of prediction and 

improving the accuracy of safety effect estimation.  

This study then applies the best FB model to the safety evaluation of ASCS and evaluates the 

safety effectiveness of ASCS at 11 ASCS corridors with a total of 109 signalized intersections. ASCS 

shows crash reductions for most of the ASCS corridors and intersections. It is also found that the safety 

effectiveness of ASCS varies across the intersections with different features, such as AADT at a major 

street and the speed limit at a major street.  
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CHAPTER 5 CRASH SEVERITY STUDY 
 

5.1 Introduction 

Crash severity (i.e., no injury, possible injury, non-incapacitating injury, incapacitating injury, or 

fatal) could be associated with a series of variables related to the corridor, intersection, and crash features. 

A multilevel structure (i.e., hierarchical structure) inherent in the crash data will be overlooked if all the 

variables are viewed at one level. Hierarchical modeling is used to represent the multilevel-structure of 

the crash data. In this study, ASCS is usually deployed at several signalized intersections on corridors; 

thus, the hierarchical structure exists inherently in the crash data.  The crash data structure can be viewed 

as a two-level hierarchy, with Level 1 being an individual crash, and Level 2 being the intersection and 

corridor (i.e., one individual crash can be associated with one specific intersection and corridor). The 

ASCS effect on the crash severity that exists in the hierarchical structure can be estimated by implementing 

hierarchical models. A random-parameter ordered regression model integrating observed heterogeneity 

(also known as a hierarchical model) allows the ASCS parameter to vary both as a function of explanatory 

variables related to the intersection and corridor features, and across crashes. This kind of ASCS effect 

that exists in the hierarchical structure is referred to as “Hierarchical Effects of ASCS on the Crash 

Severity” in this study.  

One of the objectives of this study is to determine the hierarchical effects of ASCS on crash 

severity. Through accounting for the observed heterogeneity in random-parameter ordered regression 

models (Jin et al., 2021), the hierarchical effects of ASCS on the crash severity are identified. The 

identification of the hierarchical effects of ASCS on the crash severity provides several practical 

implications on ASCS implementations from the standpoint of safety. 

5.2 Method 

 

Ordered regression models (i.e., ordered probit and logit models) are implemented to account for 

the ordinal nature (i.e., ranging from non-injury to possible injury, to non-incapacitating injury, to 

incapacitating injury, to fatal) of crash severity. The ordered regression models have been widely used to 

consider the ordinal nature of crash data mainly. However, an underlying assumption of ordered regression 

models is that the estimated parameters across crash severity levels are constant. This assumption is 

referred to as “the proportional odds or parallel regression” assumption. In this study, the research team 

initially fits ordered regression models and test this possible assumption by using the Brant test  (Brant, 

1990). It is found that the variable associated with the presence of ASCS does not violate the assumption. 

However, ordered regression models cannot capture unobserved heterogeneity across observations. Thus, 

the models may result in incorrect estimates (Washington et al., 2020). The random-parameter ordered 

regression model enables the parameters to vary across observations and has been explored by previous 

studies (Dabbour et al., 2017; Jalayer et al., 2018; Khattak et al., 2019). However, in previous studies 

related to crash severity outcome modeling, random-parameter ordered regression models have not been 

integrated with observed heterogeneity. The research team accounts for the observed heterogeneity in 
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random-parameter ordered regression models (Jin et al., 2021). The observed heterogeneity means 

changes in the effect of predictors that are known and can be captured by available explanatory variables. 

5.2.1 Random-parameter Ordered Regression Model 

The random-parameter ordered regression models (Greene, 2003) are implemented in this study. 

The ordered regression model is used to study the following latent process:  

 * ,    1,...,i i i iy i n= + =X β  (8) 

 ~ ( | )i ig θβ β  (9) 

where *

iy  is a latent variable for the observation (i.e., crash) i ; iX  (we use bold fonts for vectors 

in the report) is a vector of the explanatory variables; iβ is a vector of the coefficients; i is the error term; 

n  is the total number of observations.  

In Eq. (8) and (9), iβ is allowed to be different for each observation i  rather than fixed for all 

observations. The distribution ( | )ig θβ  is specified to enable iβ  vary across observations, where θ  is a 

vector of the mean and variance of the random distribution.  

iβ  can be written as i i= +β Lωβ , where β  is the vector of the mean of the coefficients. Each 

coefficient ki  can be expressed as ki k k ki   = + . ki is the thk element in iβ . ki  is the thk element in

iω . ki  has a specific random distribution such as normal distribution and uniform distribution. L is a 

diagonal matrix of the standard deviations of the coefficients, k . The unobserved heterogeneity is 

represented by k . ki  has a specific random distribution such as normal distribution and uniform 

distribution. For example, ki follows a normal distribution with a mean of  k  and a variance of 2

k  when

~ (0,1)i N .  

The probability of the crash severity level j  for the crash i , can be calculated as:  

 *

1 1( ) ( y ) ( ) ( )i j i j j i j ip y j P F F   − −= =   = − − −i iXβ Xβ  (10) 

where iy  is an ordered categorical variable, j is the thj  threshold in the model, and F  is the 

standard normal Cumulative Distribution Function (CDF) for the ordered probit model or logistic CDF 

for the ordered logit model. 

“KABCO” injury scale (K- fatal; A- incapacitating injury; B- non-incapacitating injury; C- 

possible injury; O- no injury) is usually used for classifying injuries. The crash severity levels provided 

by the SCDOT crash database include five categories: non-injury, possible injury, non-incapacitating 

injury, incapacitating injury, and fatal, which correlates to the KABCO injury scale. Since relatively fewer 

crashes (i.e., 1.08% out of observations) are reported for incapacitating injury (i.e., A) and fatal (i.e., K) 

categories in this study, the two categories are combined with the non-incapacitating injury (i.e., B) 

category. The KAB represents a sum of K level, A level, and B level injury crashes, which is typically 
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evaluated in safety studies (National Research Council (US), 2010). The crash severity levels are coded 

as three categories in this study: 1) non-injury (i.e., O), 2) possible injury (i.e., C), and 3) non-

incapacitating injury, incapacitating injury, and fatal combined (i.e., KAB).  

The research team uses the following model to express the response variable, iy which is composed 

of three crash severity levels. It is expressed as  

 *

00 if  i iy y =   (11) 

 *

0 11 if  i iy y =    (12) 

 *

12 if  i iy y =   (13) 

where, 0iy = indicates that the crash is O (KABCO scale); 1iy = indicates that the crash is C 

(KABCO scale); 2iy = indicates that the crash is K, A, or B (KABCO scale); 0 and 1  represent different 

thresholds for three crash severity levels; 0 is 0 here for non-injury. Here, only one threshold (i.e., 1 ) 

needs to be estimated.  

5.2.2 Random-parameter Ordered Regression Model with Observed Heterogeneity 

The random-parameter ordered regression model with observed heterogeneity can accommodate 

observed heterogeneity by allowing parameter variation to be captured by available explanatory variables. 

This model is also referred to as a hierarchical model (Greene & Hensher, 2010; Sarrias, 2016).  

The hierarchical model is used to represent the multilevel-structure of the crash data. In this study, 

ASCS is usually deployed at several signalized intersections along corridors; thus, the hierarchical 

structure exists inherently in the crash data. As shown in Figure 11, each crash can be associated with one 

specific intersection that belongs to one specific corridor. The crash data structure can be viewed as a two-

level hierarchy, with Level 1 being an individual crash, and Level 2 being the intersection and corridor 

that include the individual crash. Also, the two-level hierarchy model is considered to avoid excessive 

complexity of the model development. The ASCS effect on the crash severity that exists in the hierarchical 

structure can be estimated by implementing the hierarchical model.  
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Figure 11 Hierarchical structure of crash data 

In the crash level (i.e., Level 1 in the hierarchical model), *

iy  is used to study the latent process as 

shown below:  

 * ,    1,...,i i i iy i n= + =X β  (14) 

where, iX is a vector of the crash-level explanatory variables for the thi  observation; iβ is a vector 

of the coefficients; i is the error term; n is the total number of observations. 

In the intersection/corridor level (i.e., Level 2 in the hierarchical model), iβ is specified by Eq. 

(15). The specification of Eq. (15) allows the coefficients to vary with different intersections and corridors. 

 i i i= + +β Πs Lωβ  (15)  

where, β is a vector of the mean of coefficients; iω is a vector of random variables that follow 

random distributions; L is a diagonal matrix of the standard deviations of the coefficients; is is a vector of 

intersection/corridor-level explanatory variables; Π  is a matrix of coefficients of the intersection and 

corridor related variables. Then, the expectation of coefficients is )( i iE = +β Πsβ . The expectation of 

coefficients is a function of the intersection/corridor-level variables, is .  

More specifically, in Eq. (15), two components, iΠs  and iLω  are introduced to allow the 

coefficients to vary with different levels. First, iΠs  is a linear function depending on the 

intersection/corridor related variables, is . The primary purpose of using iΠs  is to capture the observed 

heterogeneity across different intersections and corridors. It is expected that the varying intersections and 

corridor features (e.g., number of legs at an intersection, number of through/left/right lanes at an 

intersection, speed limit difference between major streets and minor streets at an intersection, and 

signalized intersection distance on a corridor) may lead to different crash severity. Second, iLω  represents 

random effects, which capture both the intersection/corridor-level and the crash-level variability. The 
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primary purpose of using iLω  is to capture the unobserved heterogeneity in the crash data. These random 

effects are assumed not only to vary across various intersections/corridors but also to vary for the crashes 

within the same intersection/corridor.  

To evaluate the effect of the explanatory variables on the probability of crash severity, especially 

on the intermediate level (i.e., possible injury), marginal effects for the three crash severity levels (i.e., O, 

C, and KAB) are computed. The marginal effect of explanatory variables indicates the change of the 

probability of crash severity level associated with a one-unit change in the continuous variables or change 

from ‘‘0” to ‘‘1” in the indicator variables. It should also be noted that marginal effects are estimated at 

the sample mean of the explanatory variables using the expectation of parameters when computed for 

random parameters. Marginal effects for the three crash severity levels are computed (Greene, 2003; 

Washington et al., 2020) as follows: 
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where,  is the standard normal Probability Density Function (PDF) for the ordered probit model 

or logistic PDF for the ordered logit model; x is the explanatory variable.  

Model implementation and estimation procedure is detailed in APPENDIX B-2. 

5.3 Data Description 

Initially, the research team obtained crash data from 13 corridors that have installed ASCS. 

Original crash data have before period and after period data. The research team only includes corridors 

that have at least two-year before and after period crash data for this study. As listed in Table 7, there is a 

total of 11 corridors with a total of 109 intersections where ASCS has been deployed. In total, 13,262 

crashes are analyzed in this study.  

 

 

  



 34 

Table 7 Corridor information 

Location Corridor Number of signalized 

intersections 

ASCS installation 

date 

Number of crashes at 

intersections 

Greenville  Roper Mt. Rd./ 

Garlington Rd. 

5 November 2016 193 

Woodruff Rd. 17 November 2017  3585 

Charleston SC 642 18 June 2015 931 

US 52 17 October 2016 2387 

Pawleys Island US 17 6 February 2016 552 

Summerville US 17A 12 June 2015 2005 

Garden City/ Surfside US 17 Business 9 March 2017  1198 

Lexington N. Lake Drive 7 December 2015 502 

Main Street 5 June 2017 753 

US 378 7 June 2017  741 

Mount Pleasant Long Point Rd. 6 November 2017  415 

 

According to SCDOT, intersection-related crashes are those that occurred within 0.05 miles of the 

center of the intersection. Using the threshold of 0.05 miles, the intersection-related crashes are identified. 

The year of crash data varies from 2011 to 2019. Crash data of six months after the installation of ASCS 

are removed from the analysis, which eliminates the effect of acclimation to ASCS of drivers. As shown 

in Table 8, 81.2% of the crashes are no injury, 13.5% of the crashes are possible injury, and a small 

proportion (i.e., 5.2%) of the crashes is KAB (i.e., fatal, incapacitating injury, and non-incapacitating 

injury combined).  

Table 8 Frequency (and percentage) of crash severity 

Crash severity outcome Frequency (Percentage) 

O* 10775 (81.2%) 

C* 1792 (13.5%) 

KAB* 695 (5.2%) 

*KABCO crash severity scale. KAB: fatal, incapacitating injury, and non-incapacitating injury combined, C: possible injury, 

and O: no injury 

In the development of the random-parameter regression models, the research team initially 

considers FYA as one of the explanatory variables of the model. A categorical variable is considered to 

distinguish the effects of different numbers of FYA at the intersections on crash severity outcomes. It is 

found that the categorical variable is not significant, and adding the categorical variable increases the AIC 

of the model. Thus, the FYA variable is taken out of the model since it cannot provide useful information. 
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Left-turn lanes were modified at one intersection in one of the study corridors after the ASCS was 

installed. To exclude the effect of such improvements that may impact safety, the crashes that occurred at 

this intersection are not included in the analysis. An additional signal phase was added to one signal after 

the ASCS was installed; thus, the crashes located at this intersection are not included in the analysis.  

The following crash attributes are provided by SCDOT: collision time, crash severity, Annual 

Average Daily Traffic (AADT), light condition, road surface condition, crash type, weather condition, 

work zone, first harmful event (e.g., motor vehicle, animal, and pedestrian), and probable cause. The 

purpose of the inclusion of the first harmful event is to determine the involvement of pedestrians. The 

purpose of the inclusion of probable cause is to identify the distracted or aggressive drivers (i.e., aggressive 

operation of the vehicle or at excessive speed). The light (i.e., dawn, daylight, dusk, or dark), and weather 

conditions (rain or not) are accounted for because those attributes may have impacts on crash severity. 

Peak periods for each corridor analyzed in this study are identified by analyzing hourly average travel 

time data provided by the Iteris ClearGuide system (Iteris, 2020). The peak periods only exist on weekdays 

for the study corridors, and we found that the hourly average travel time does not vary much over the 24 

hours during weekends on our study corridors. That is why only weekday peak periods are considered in 

this study, as shown in Table B-1 in APPENDIX B-1. Crash data available for South Carolina and 

provided by the SCDOT do not map crashes to traffic signal status (i.e., green, yellow, or red) (SCDOT, 

2020d). Consequently, each crash cannot be associated with a specific signal phase from the available 

data. Due to this limitation, signal related parameters, such as signal status (i.e., green, yellow, or red) and 

green/yellow/red time, could not be introduced into the model.  

The attributes from the crash database are converted to the response and explanatory variables. 

The response variable includes three crash severity levels- O, C, and KAB. The explanatory variables 

include light condition, ASCS presence, FYA presence, peak period, crash type (i.e., rear-end or angle), 

weather condition, careless driving, aggressive driving, the presence of pedestrians, and AADT. Also, the 

research team has collected area type (urban or not) and speed limit data from the SCDOT website 

(SCDOT, 2020a), and corridor geometric features (i.e., the average distance between signalized 

intersections) from Google Earth. The descriptive statistics for the response and the significant 

explanatory variables for both before period and after period are shown in Table B-2 in APPENDIX B-1. 

A Pearson correlation test between AADT and the peak period is conducted, and it is found that there is 

no correlation between AADT and the peak period in this study. A high traffic volume may be associated 

with a higher crash severity. An AADT threshold of 30,000 is used to identify relatively high traffic 

volume in this study based on a previous study (Fink et al., 2016). A threshold of 10 mph speed difference 

between a major road and a minor road at an intersection is used to divide the observations into two groups 

(one group for which the speed limit difference between a major road and a minor road is equal to or 

greater than 10 mph; another group for which the speed limit difference between a major road and a minor 

road is less than 10 mph) because, based on our analysis, the median speed limit difference between a 

major road and a minor road in the sample is about 10 mph. In this study, all explanatory variables are 

tested in terms of Multicollinearity (MC). It is found that the maximum value of the Variance Inflation 

Factor (VIF) is 2.37. Thus, the MC issue should not be of concern for the variables considered in this 

study. The research team initially includes the interaction variables into the model to account for the 
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interaction between ASCS and angle crash and the interaction between ASCS and rear-end crash in the 

model. However, the interaction variables are not significant, and adding these interaction variables 

increases the AIC of the model. Therefore, the interaction variables are later excluded from the model.  

5.4 Results 

 

5.4.1 ASCS Effects on Crash Severity 

The hierarchical effects of ASCS on the crash severity represent the ASCS effect varied by 

intersection and corridor features, detailed in APPENDIX B-4. 

The marginal effects for the three crash severity levels are computed, as shown in Table 9. A 

positive sign of the value in the marginal effects table indicates an increase in the probability of a severity 

level for the ASCS variable, meaning that such a level is indeed likely to increase due to ASCS. However, 

a negative sign of the value in the marginal effects table indicates a decrease in the probability of the 

severity level for the ASCS variable, meaning that such a level is likely to decrease due to ASCS. 

The marginal effects in Table 9 show that ASCS can reduce the probability of C and KAB for the 

majority of intersections and corridors except for the N. Lake Dr., SC 642, US 17, and US 17 Business 

with the speed limit difference between a major road and a minor road equal to or greater than 10 mph 

(orange-colored area in Table 9). The marginal effects of ASCS vary in terms of intersection and corridor 

features. For example, for US 17A with the speed limit difference between a major road and a minor road 

less than 10 mph, ASCS can reduce the probability of C and KAB by 4.76% and 2.13%, respectively, 

while increasing the probability of O level by 6.89%. Although the absolute value of the ASCS effect on 

the KAB level seems to be small, for the case of the small proportion of KAB (i.e., the average is around 

5.2%) in the studied intersections, ASCS is quite effective in reducing the probability of being KAB level 

for crashes that occurred at intersections. The effectiveness of reducing the KAB (i.e., marginal effect for 

KAB divided by the proportion of KAB for the corresponding intersections) is computed in the last column 

in Table 9. For example, the highest benefit is achieved for US 378 with a speed limit difference between 

a major road and a minor road less than 10 mph by 2.21%/1.80%=122.56%. 
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Table 9 Marginal effects of ASCS on crash severity levels 

Corridor 

Intersection 

feature 

Corridor 

feature 
Marginal effect  

Proportion 

of KAB  

Effectiveness 

of reducing 

KAB 

Speed limit 

difference 

equal to or 

greater than 

10 mph? 

Average 

signal 

distance 

(miles) 

For O  For O  For KAB  

US 17A 
No 0.27 6.89% -4.76% -2.13% 4.17% 51.12% 

Yes 0.27 3.87% -2.61% -1.25% 4.29% 29.11% 

Roper Mt. Rd./ 

Garlington Rd. 

No 0.36 5.58% -3.82% -1.76% 1.55% 113.23% 

N. Lake Dr. 
No 0.55 2.38% -1.59% -0.79% 5.43% 14.54% 

Yes 0.55 -1.01% 0.66% 0.35% 4.40% -7.95% 

SC 642 
No 0.52 3.05% -2.05% -1.00% 6.40% 15.62% 

Yes 0.52 -0.45% 0.30% 0.16% 7.13% -2.24% 

US 52 
No 0.31 6.31% -4.35% -1.97% 5.61% 35.09% 

Yes 0.31 3.22% -2.16% -1.05% 6.47% 16.23% 

US 17 Yes 0.61 -2.15% 1.39% 0.77% 9.96% -7.73% 

Long Point Rd. 
No 0.26 7.28% -4.98% -2.30% 13.30% 17.29% 

Yes 0.26 4.05% -2.73% -1.31% 9.90% 13.27% 

Main Street 
No 0.26 7.28% -4.98% -2.30% 3.40% 67.62% 

Yes 0.26 4.05% -2.73% -1.31% 5.40% 24.33% 

US 17 Business 
No 0.66 0.63% -0.42% -0.21% 7.70% 2.72% 

Yes 0.66 -2.99% 1.97% 1.03% 9.40% -10.91% 

US 378 
No 0.28 6.97% -4.76% -2.21% 1.80% 122.56% 

Yes 0.28 3.72% -2.51% -1.21% 3.80% 31.82% 

Woodruff Rd. 
No 0.23 7.75% -5.31% -2.44% 2.30% 105.96% 

Yes 0.23 4.55% -3.08% -1.47% 3.00% 48.98% 

 

5.4.2 Effects of Other Contributing Factors on Crash Severity 

As depicted by the marginal effects in Table 10, other contributing factors except for the peak 

period are associated with higher crash severity levels (i.e., C and KAB) while less likely to be a lower 

crash severity (i.e., O). Crashes involving pedestrians will lead to higher crash severity levels and increase 
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the probability of KAB by 57.69%. The presence of AADT over 30,000 vehicles/day results in a 

corresponding increase in the likelihood of C and KAB given the critical role of high traffic volume in 

overall crashes at the signalized intersections. Not surprisingly, an increase in the posted speed limit is 

associated with a greater likelihood of C and KAB. The higher speed limit naturally results in a higher 

vehicle operational speed, with an increase in the severity of crashes. The bad light condition (i.e., dark, 

dawn, or dusk) of roadways is associated with a higher likelihood of C and KAB. The peak period leads 

to lower crash severity (i.e., O). During peak periods, the traffic volume is higher compared to off-peak 

periods, which would contribute to lower average speeds of the vehicles during peak periods, thus 

resulting in reduced crash severity. The crash, which is either rear-end or angle crash, is associated with 

more probability of being C and KAB.  

Table 10 Marginal effects of other contributing factors 

Other contributing factors Marginal effect for O  Marginal effect for C  Marginal effect for KAB  

Pedestrian -69.83% 12.14% 57.69% 

AADT_over_30k -5.92% 4.11% 1.81% 

Speed_Limit -0.24% 0.16% 0.07% 

Light -9.14% 6.01% 3.13% 

Peak 2.30% -1.59% -0.71% 

Rear_end -3.47% 2.38% 1.09% 

Angle -9.21% 6.09% 3.12% 

 

5.5 Chapter Conclusions 

This study investigated the hierarchical effects of ASCS on the crash severity by developing 

random-parameter ordered regression models with observed heterogeneity, which accounts for both 

observed and unobserved heterogeneity. Four different random-parameter ordered regression models (two 

ordered probit models, and two ordered logit models) are established and compared, as shown in 

APPENDIX B-3. It is found that the random-parameter ordered probit and logit models (ROP and ROL) 

with observed heterogeneity perform better than the random-parameter ordered probit and logit models 

(RP and RL) without observed heterogeneity in terms of the AIC and the goodness of fit of the model. 

The ROP model outperforms the ROL model in terms of classification model performance measures: 

accuracy, overall precision, and overall recall. This study demonstrates the existence of the hierarchical 

effects of ASCS on the crash severity. The analyses reveal that the presence of ASCS is associated with 

lower crash severity. Speed limit difference between major streets and minor streets at an intersection (i.e., 

intersection feature) and average signal distance on a corridor (i.e., corridor feature) are found to be 

capable of capturing the hierarchical effects of ASCS on the crash severity. Other variables related to 

intersection features such as the number of legs at an intersection and number of through/left/right lanes 

at an intersection and corridor features, such as average AADT on a corridor, are attempted in the 

modeling, but these variables are not statistically significant. Thus, in this study, these variables are not 
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able to capture the hierarchical effects of ASCS on the crash severity. In the future, variables related to 

zonal features such as population densities could be accounted for to capture the hierarchical effects of 

ASCS on the crash severity. Other contributing factors, such as high annual average daily traffic, speed 

limit, lighting, crash type (i.e., rear-end or angle), pedestrian involvements, are associated with higher 

crash severity. The peak period leads to lower crash severity. Unobserved heterogeneity of the effect of 

angle crashes on crash severity is found to exist across the observations while using the uniform 

distribution to explicitly account for crash-specific variations in the effects of angle crashes. 

The findings of this study have several practical implications for establishing ASCS 

implementation guidelines from the standpoint of safety. Two useful metrics, speed limit difference 

between a major street and a minor street at an intersection (i.e., intersection feature) and average signal 

distance on a corridor (i.e., corridor feature), could help transportation agencies to deploy ASCS 

appropriately. Two practical implications are found: 1) when speed limit difference between major streets 

and minor streets at an intersection is equal to or greater than 10 mph, and the average signal distance on 

a corridor is less than the threshold of 0.49 miles, the ASCS is more likely associated with lower crash 

severity; and 2) when speed limit difference between major streets and minor streets at an intersection is 

less than 10 mph, and the average signal distance on a corridor is less than the threshold of 0.69 miles, the 

ASCS is associated with lower crash severity. These findings are related to a particular type of ASCS, 

SynchroGreen, and future studies may be conducted to include multiple types of ASCS. Identifying the 

hierarchical effects of ASCS on the crash severity helps transportation agencies achieve higher safety 

benefits by selecting ASCS deployment sites considering the specific intersection and corridor features.  
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CHAPTER 6 SECONDARY CRASH STUDY 
 

6.1 Introduction 

With real-time traffic signal parameters adjustment capability, ASCS can better accommodate 

fluctuating traffic demand or extreme traffic conditions caused by traffic incidents or special events. Thus, 

any alternate route to a freeway segment with ASCS deployed on that alternate route can be used to 

potentially improve the traffic conditions on a freeway in case any incident happens on that freeway. 

However, to the best of our knowledge, there exists no such study in the literature that evaluated the 

possible benefits of having an ASCS deployed alternate route to a freeway segment towards the reduction 

in the likelihood of freeway secondary crashes. 

In this study, the research team develops a method for assessing the likelihood of secondary crashes 

on freeways with alternate routes where ASCS has been deployed (Salek et al., 2021). The applicability 

of the method is firstly demonstrated with two freeway segments where ASCS is deployed in several 

intersections within the alternate route used by diverted freeway traffic when a crash occurs on the freeway 

segment. The research team developed binary logistic regression models for Charleston I-26 (Eastbound 

and Westbound) in South Carolina to investigate if the presence of an ASCS deployed alternate route is 

associated with a reduction in the likelihood of freeway secondary crashes. This study also developed 

binary logistic regression models for two freeway sections with non-ASCS (i.e. pre-timed, semi-actuated, 

or fully-actuated) alternate routes to examine if the likelihood of secondary crashes differs between 

freeways with ASCS deployed on alternate routes and freeways with non-ASCS alternate routes. In 

addition, the effect of ASCS on the likelihood of secondary crashes on a freeway may vary across 

observations (i.e., primary crashes). To capture unknown variations in the effect of ASCS across the 

observations (which the research team refers to as “unobserved heterogeneity”), the research team 

developed a random-parameter binary logistic regression model to account for observation-specific 

variations in the effects of ASCS and to provide more accurate inferences.  

6.2 Method 

The method to assess the likelihood of secondary crashes on freeways with alternate routes 

includes four steps:  

1. Identification of secondary crashes using fixed spatial-temporal criteria and other factors such 

as manner and probable cause of the collision 

2. Verification of alternate routes with SCDOT and travel time data from the alternate routes 

3. Modeling the likelihood of secondary crashes for both ASCS deployed alternate routes and 

non-ASCS alternate routes using a binary logistic regression model 

4.  Investigation of unobserved heterogeneity of ASCS using a random-parameter binary logistic 

regression model. 

This section explains these four steps of the method in detail (Salek et al., 2021). 
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6.2.1 Identification of Secondary Crashes   

Selecting spatial-temporal criteria for identifying secondary crashes on freeways is a challenging 

task. Secondary crashes are typically induced by primary crashes that cause adverse effects on traffic flow. 

These impacts of primary crashes on traffic flow vary depending on many factors such as the number of 

blocked lanes, clearance time, and crash severity. However, lane blockage and clearance time information 

are not available for the study corridors. Thus, the individual impact of each primary crash cannot be 

determined. Therefore, the research team considered a fixed spatio-temporal range as a primary criterion 

for the identification of secondary crashes. The research team considers a crash to have the possibility of 

being induced by a primary crash if it occurs within a one-hour period after the primary crash and within 

a two miles range in the upstream of the primary crash. The research team used a fixed spatio-temporal 

range for secondary crash identification as there is no available real-time traffic volume data for the 

freeway segments considered in this study that may be used to develop individual crash-specific spatio-

temporal ranges for secondary crash identification. A detailed identification procedure of secondary 

crashes is documented in APPENDIX C-1.  

6.2.2 Verification of Alternate Routes  

The research team investigated the parallel arterials of the freeway segments for alternate route 

verification. Firstly, the research team verified the alternate routes with SCDOT. Then, the research team 

utilized real-time travel data to investigate the change in traffic conditions of the parallel arterials in the 

event of crashes on the freeways. Hourly travel time data recorded by ClearGuide (Iteris, 2020) is used to 

observe how the average travel time of the parallel arterial changes in the one-hour after period when a 

crash occurs on the freeway segment. For each crash on the freeway, weighted average travel time in one-

hour after period is computed from the hourly travel time data. For example, if a crash occurs at 05:25 

PM, then the weighted average travel time on the ASCS-deployed alternate route for the one-hour after 

period (i.e., 05:25 PM to 06:25 PM) is calculated as follows: 

Weighted average travel time (05:25 PM to 06:25 PM) = 
35

60
× (average travel time from 05:00 PM  

  to 06:00 PM) +  
25

60
× (average travel time from 06:00 PM to 07:00 PM) 

The weighted average travel time is then compared with the historical weighted average of travel 

time for that segment of the day. Hourly travel time data recorded by ClearGuide (Iteris, 2020) from four 

consecutive months around the time when the crash occurred is used to compute historical averages of 

hourly travel time data. The historical weighted average of travel time for 1-hour after period of the crash 

is then computed from the historical average of hourly travel time data similarly as shown in the last 

example above. The historical weighted average is computed separately for weekdays and weekends. The 

weighted average travel time for one-hour after period of a crash occurrence is compared with the 95% 

confidence interval of the historical weighted average of travel time for that period. If the weighted 

average exceeds the upper confidence limit of 95% confidence interval of the historical weighted average, 

then the change in travel time (i.e., through the alternate route) due to crash occurrence on the freeway is 

considered to be significant.  
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6.2.3 Binary Logistic Regression Model 

The research team developed binary logistic regression models to evaluate the likelihood of 

secondary crashes, as the secondary crash occurrence is a binary outcome (i.e., occurrence or non-

occurrence) that can depend on many factors.  

The binary logistic regression (i.e., logit) model used to evaluate the likelihood of a secondary 

crash occurrence is formulated as follows, 

 
( 1| )

ln
1 ( 1| )
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X
Xβ

X
           (19) 

where, ( 1| )P y = X = the conditional probability of a secondary crash occurrence given a primary 

crash occurred; X = the vector of explanatory variables associated with primary crashes;β = the vector of 

coefficients corresponding to the explanatory variables. 

Eq. (19) presents a general form of the binary logistic regression model. The research team 

developed corridor-specific binary logistic regression models from Eq. (19) and identified statistically 

significant explanatory variables. The response variable, y in Eq. (19) is equal to 1 if a secondary crash 

occurred or 0 otherwise.  

The research team used open-source R software to perform the regression analysis. The 

generalized linear model, “glm” function in R is used to estimate the coefficients of the logistic regression 

model. This function uses Iterative Weighted Least Squares (IWLS) to find the Maximum Likelihood 

Estimation (MLE) of the coefficients in β . Using the fitted model, the effect of thk  explanatory variable 

on the occurrence of a secondary crash can be evaluated by Odds Ratios (ORs) given by, 

 kOR e


=               (20) 

where k is the coefficient of the thk explanatory variable in the fitted model. 

The Variance Inflation Factor (VIF) is used to check for potential Multicollinearity (MC). Many 

researchers used a VIF of 10 as a rule of thumb to indicate excessive or severe MC issues (O’Brien, 2007). 

Akaike Information Criteria (AIC) was compared among different candidate models and the model with 

the lowest AIC value is preferred.  

6.2.4 Random-parameter Binary Logistic Regression Model 

Compared to the fixed-parameter binary logistic regression model, a random-parameter binary 

regression model can capture unobserved heterogeneity across observations. Eq. (19) can be rewritten as, 
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where, iX is a vector of the explanatory variables of observation (i.e., primary crash) i , iβ  is a 

vector of the coefficients, and θ  is a vector of the mean and variance of the random distribution. 

Model estimation and implementation procedures are detailed in APPENDIX C-4. 

6.3 Data Description 

The research team considered two freeway segments with ASCS deployed on alternate routes to 

investigate the likelihood of secondary crash occurrences (see Figure 12(a)): 1) an 8.92-mile section of 

Charleston I-26 E, and 2) a 9.6-mile section of Charleston I-26 W. These two corridors are referred as 

“Freeways with ASCS deployed on alternate routes” in the rest of the study as they have an ASCS 

deployed parallel arterial (US 52). For the Charleston I-26 freeway sections, ASCS was deployed at 17 

intersections of parallel US 52 in October 2016. US 52 is considered an alternate route (verified by 

SCDOT and with ClearGuide data) for diverting traffic of I-26 Eastbound and Westbound sections in the 

event of a freeway primary crash. The functional class of US 52 is “principal arterial.” 

This study also uses freeways with non-ASCS (i.e., pre-timed, semi-actuated or fully-actuated) 

alternate routes similar to the freeways with ASCS deployed on alternate routes to examine if the effect 

of the after-period indicator (i.e., based on ASCS deployment) differs between these freeways. The 

research team selects two freeway sections with non-ASCS alternate routes that have comparable segment 

lengths, AADT of the freeway sections and the same functional classes as the freeways with ASCS 

deployed on alternate routes (see Figure 12(b)). The freeways with non-ASCS alternate routes are: 1) a 

7.75-mile section of Richland-Lexington I-26 E, and 2) a 7.64-mile section of Richland-Lexington I-26 

W. In addition, both the ASCS-deployed sites and the control sites considered for this study are located 

within the jurisdiction of the SCDOT. Therefore, the research team assumes similar management and 

maintenance characteristics, such as pavement maintenance, traffic management, and enforcement for the 

corridors considered in this study. A comparison of characteristics of the freeways with ASCS deployed 

on alternate routes and freeways with non-ASCS alternate routes are presented in Table 11. 

 

(a) 

 

(b) 

Figure 12 (a) Charleston I-26 with ASCS deployed on alternate route US 52, and (b) Richland-Lexington I-26 with non-ASCS 

alternate route US 176 
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Table 11 Comparison of freeways with ASCS deployed on alternate routes and non-ASCS alternate routes 

Corridor name 
Corridor 

length 

Mean 

AADT 
Alternate route 

Functional class of the 

alternate route 

Freeways with ASCS deployed on alternate routes 

Charleston I-26 E 8.92 miles 149852 US 52 Principal arterial 

Charleston I-26 W 9.6 miles 145875 US 52 Principal arterial 

Freeways with non-ASCS alternate routes 

Richland-Lexington I-26 E 7.75 miles 119699 US 176 Principal arterial 

Richland-Lexington I-26 E 7.64 miles 115983 US 176 Principal arterial 

 

For the analysis, the research team uses “crash code” as the response variable. Crash code 0 and 

crash code 1 indicate primary crashes that did not induce any secondary crash and primary crashes that 

induced one or more secondary crashes, respectively. Table 12 and Table 13 present a summary of the 

crash data used for analysis based on the crash codes. 

Table 12 Summary of response variables of freeways with ASCS deployed on alternate routes 

Corridor name Crash code Frequency Percentage 

Charleston I-26 E 
0 1443 91.04% 

1 142 8.96% 

Charleston I-26 W 
0 1518 92.17% 

1 129 7.83% 

 

Table 13 Summary of response variables of freeways with non-ASCS alternate routes 

Corridor name Crash code Frequency Percentage 

Richland-Lexington I-26 E 
0 1233 90.73% 

1 126 9.27% 

Richland-Lexington I-26 W 
0 1368 90.66% 

1 141 9.34% 

 

To evaluate the effect of ASCS deployment on the likelihood of freeway secondary crashes, the 

research team extracted a total of 52 months of crash data for Charleston I-26 (East and West) corridors. 

The extracted crash data include26 months spanning from September 2014 to October 2016 for the before 

period of the ASCS deployment, and 26 months spanning from November 2016 to December 2018 for 

the after period of the ASCS deployment. The same period of data is extracted for Richland-Lexington I-

26 Eastbound and Westbound corridors. A total of 1757 crash data from Charleston I-26 E section were 

used: 772 crashes occurred in the before-deployment period and 985 crashes occurred in the after-
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deployment period. A total of 1805 crash data from Charleston I-26 W section were used: 849 crashes 

occurred in the before-deployment period and 956 crashes occurred in the after-deployment period. 

For each freeway section, the crash data does not only include crashes that occurred on the freeway 

but also includes the crashes that occurred on the entrance ramps to the freeway section. The rationale for 

including the entrance ramp crashes in the analysis is that when a crash occurs on the freeway, sometimes 

if it creates major congestion, then traffic can back up to the entrance ramp and can cause secondary 

crashes on the ramps as well. Therefore, the entrance ramp crashes are used in the dataset only to check if 

there was any secondary crash on the ramps induced by a primary crash on the freeway. Table 14 lists the 

number of entrance ramps included in the crash data set for secondary crash detection.  

Table 14 Number of entrance ramps included in crash data set 

Study corridor name 
Number of entrance 

ramps 

Freeways with ASCS deployed on 

alternate routes 
Charleston I-26 

Eastbound 11 

Westbound 15 

Freeways with non-ASCS alternate 

routes 
Richland-Lexington I-26 

Eastbound 8 

Westbound 8 

 

SCDOT provided the crash data for the analysis presented in this study. The crash data includes 

several attributes such as collision time, AADT, light condition, roadway surface condition, manner of the 

collision, weather condition, first harmful event, and probable cause of the crash. Variables such as light 

condition (i.e., dawn, daylight, dusk, or dark), roadway surface condition (i.e., dry, icy, wet or snowy), 

weather condition (i.e., adverse or not adverse condition), manner of collision (e.g., rear-end, angle, head-

on, and side-swipe) help to account for various possible attributes that may affect the secondary crash 

occurrence. The research team does not use real-time traffic volume data since there is a significant 

amount of missing data in the whole study period. Model variables are detailed in Appendix C-2. 

6.4 Results 

 

6.4.1 Verification of Alternate Routes 

Table 15 presents the results from the alternate routes verification for all the corridors. Travel time 

data for the time period between September 1, 2018 to December 31, 2018 were analyzed because 

ClearGuide travel time data were not available for the period before September 1, 2018 and the study 

period for this project for the study corridors ends on December 31, 2018. It is observed that for over 40% 

of the crashes that occurred on the freeway sections from September 1, 2018 to December 31, 2018, travel 

time increased significantly, over 40% of the times, compared to the historical average travel time in the 

corresponding parallel alternate routes, indicating that drivers often use these routes when a crash occurs 

on the freeway.  

 

 



 46 

Table 15 Alternate route verification with travel time information 

Study corridor name 

Percentage of crashes on the 

freeway causing average travel 

time to significantly increase in the 

parallel alternate route 

Freeways with ASCS deployed on 

alternate routes 

Charleston I-26 E 44.76% 

Charleston I-26 W 51.56% 

Freeways with non-ASCS 

alternate routes 

Richland-Lexington I-26 E 47.42% 

Richland-Lexington I-26 W 42.02% 

 

6.4.2 Binary Logistic Regression Model Results 

Based on the explanatory variables considered here, Eq. (19) can be rewritten as follows, 

( 1| )
ln

1 ( 1| )

P y

P y

 =
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− = 

X

X
= β0 + β1 × (after-period indicator of ASCS deployment) + β2 × (light condition) + 

  β3 × (roadway surface condition) + β4 × (weather condition) + β5 × (rear-end crash) + β6 × (angle crash) + β7 × (weekday) 

+ β8 × (peak period) + β9 × (crash severity) + β10 × (temporal trend) + β11 × log(AADT)   

                 (23) 

The research team applied the binary logistic regression model, shown in Eq. 23, to the crash 

datasets for all the study corridors. Table 16 presents the model estimation results of “After-period 

indicator variable of ASCS deployment” for the freeways with ASCS deployed on alternate routes and 

freeways with non-ASCS routes (based on corridor-specific binary logistic regression models). For all the 

corridor-specific models, the research team checks for any existing multicollinearity using the VIF. For 

all the ASCS and the non-ASCS corridors, the maximum VIF is found to be less than or equal to 3.5. 

Therefore, it is assumed the multicollinearity does not exist among the explanatory variables as VIF < 10. 

The Odds Ratio (OR) is defined as the ratio of the odds of an outcome occurring by exposure of a 

variable to the odds of the outcome occurring in the absence of that exposure. From the odds ratios, 

percentage changes in secondary crash occurrence odds are evaluated. In Table 16, the odds ratios and 

percentage changes in secondary crash occurrence odds are displayed only if the predictor (i.e., after-

period indicator of ASCS deployment) is found to be statistically significant at a 0.1 significance level.  

As shown in Table 16, for Charleston I-26 E, a 47.32% reduction in the likelihood of secondary 

crashes is associated with the after period of ASCS deployment. However, for Charleston I-26 W, binary 

logistic regression models cannot reveal any statistical significance of ASCS deployment for reducing the 

likelihood of secondary crashes. As the same parallel arterial may not always be convenient as an alternate 

route for the drivers traveling in opposing directions, the effect of ASCS deployment on the alternate 

routes can also be different for opposing traffic on the freeway. Opting for an alternate route depends on 

many factors such as drivers’ behavior, freeway crash severity, lane blockage, and the number of vehicles 

involved in the crash.   

As mentioned in the “6.2 Method” section, for freeways with non-ASCS alternate routes, “after 

period indicator for freeways with alternate non-ASCS corridors” is included in the model as a predictor 
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in order to observe if the temporal division used for ASCS deployment’s before and after period signifies 

anything. In Table 16, it is observed that for none of the freeways with non-ASCS alternate routes is this 

variable significant. It indicates that this temporal division of the study period signifies nothing for the 

freeways with non-ASCS alternate routes as there was no ASCS deployment. 

Table 17 presents the other statistically significant predictors and their corresponding coefficients 

estimate from logistic regression model. For both freeways with ASCS deployed on alternate routes and 

non-ASCS alternate routes, frequently observed statistically significant variables include rear-end crashes, 

light condition, weekday, and AADT. Note that crash severity and roadway surface condition are not 

included in Table 17, as neither of these two variables is significant for these corridors. 

Table 16 Model estimates & interpretations of after-period indicator of ASCS deployment 

Corridor type Corridor name 

Coefficients: 
Odds 

ratio 

Percentage change 

in secondary crash 

occurrence odds 
Estimate Pr(>|z|) 

Freeways with ASCS 

deployed on alternate 

routes 

Charleston I-26 E - 0.641 0.059* 0.527 -47.324% 

Charleston I-26 W 0.222 0.5182 - - 

Freeways with non-

ASCS alternate routes 

Richland-Lexington I-26 E - 0.065 0.8518 - - 

Richland-Lexington I-26 W 0.334 0.3030 - - 

‘*’ statistically significant at a 0.1 significance level 

Table 17 Model estimates of other predictors 

Predictors 

Coefficients estimate (with Pr(>|z|) in the parentheses) 

Freeways with ASCS deployed on alternate 

routes 
Freeways with non-ASCS alternate routes 

Charleston I-26 E Charleston I-26 W 
Richland-Lexington 

I-26 E 

Richland-Lexington 

I-26 W 

Light 

condition 
0.190 (0.533) 0.378 (0.093*) 0.599 (0.028**) 0.355 (0.204) 

Weather 

condition 
NS 0.547 (0.015**) NS NS 

Rear end 0.821 (0.0008**) 1.417 (4.96e-07**) 0.949 (0.0003**) 1.077 (3.72e-05**) 

Angle crash NS 1.397 (0.0006*) NS NS 

Weekday NS NS 0.498 (0.068*) -0.912 (4.4e-05**) 

Peak period 0.929 (7.32e-06**) NS NS NS 
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Predictors 

Coefficients estimate (with Pr(>|z|) in the parentheses) 

Freeways with ASCS deployed on alternate 

routes 
Freeways with non-ASCS alternate routes 

Charleston I-26 E Charleston I-26 W 
Richland-Lexington 

I-26 E 

Richland-Lexington 

I-26 W 

Temporal 

trend 
0.268 (0.041**) NS NS NS 

ln (AADT) 1.916 (0.0001**) NS 1.876 (0.001**) NS 

‘**’ statistically significant at a 0.05 significance level 

‘*’ statistically significant at a 0.1 significance level 

‘NS’ not statistically significant 

The research team performed additional analysis for Charleston I-26 E with traffic count and speed 

data collected from SCDOT Traffic Polling and Analysis System (SCDOT, 2020c). Detailed analysis is 

shown in APPENDIX C-3. The research team performed this analysis exclusively for Charleston I-26 E 

to prove that the favorable effect of ASCS found for Charleston I-26 E is not a contribution of reduced 

crash exposure (i.e., lower freeway traffic counts after a crash occurrence) or reduced speed on the freeway 

due to any primary crash on the freeway.  

6.4.3 Random-parameter Logistic Regression Model Results 

Fixed-parameter binary logistic regression models help to identify the statistically significant 

variables in the likelihood of a secondary crash. However, a limitation of the fixed-parameter binary 

logistic regression model is that it cannot capture unobserved heterogeneity since the model assumes the 

global effect of each predictor across observations. Therefore, a random parameter logistic regression 

model is deployed to study the heterogeneous effect of the ASCS deployment for Charleston I-26 E. It is 

found that 84% of all observations have a negative coefficient associated with the presence of the ASCS 

corridor, suggesting an association between the presence of the ASCS deployed on the alternate route and 

the reduction of the likelihood of secondary crashes on the parallel freeway. The detailed model results 

for Charleston I-26 E are presented in Table C-4 in APPENDIX C-4.  

The research team then investigates the locations of individual observations (i.e., primary crashes) 

for which the presence of the ASCS deployed on the alternate route is associated with an increase in the 

likelihood of freeway secondary crashes. The motivation behind doing this is to investigate the reasons 

behind the increased likelihood of secondary crashes. Figure 13 shows the locations of the crashes on I-

26 E freeway and the possible exit ramps that freeway drivers can take to exit Charleston I-26 E and to 

access US 52. As observed from Figure 13, most of the primary crashes for which the coefficients of 

ASCS are positive occurred closer to the east end of the Charleston I-26 E section and took place past the 

second possible exit ramp to access US 52. Also, closer to the east end of the Charleston I-26 E section 

means closer to the Charleston city downtown. When a crash occurs closer to the east end of the Charleston 
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I-26 E section, it may not always seem to be a convenient choice for the upstream traffic to divert as they 

may think that they are already very close to their destination and sometimes it may not be a feasible 

option to divert as they may have already passed the nearest exit ramp. The benefit of ASCS deployed on 

the alternate route may not be that much since fewer signals are involved when a crash occurs closer to 

the east end of the Charleston I-26 E section. Therefore, the effect of ASCS deployed on the alternate 

route in the likelihood of freeway secondary crashes can vary depending on the location of the primary 

freeway crash as it affects the amount of traffic are able or choose to divert. 

 

 

Figure 13 Location of Charleston I-26 E freeway crashes associated with the increase in the likelihood of secondary crashes 

6.5 Chapter Conclusions 

Reduction in the likelihood of secondary crashes can noticeably decrease emission, delay, vehicle 

operating cost, and safety issues on the freeways. This research unveils a unique interrelation between 

ASCS deployed on an alternate route and the likelihood of parallel freeway secondary crashes. The 

findings from a binary logistic regression model using 52 months of crash data of Charleston I-26 E with 

ASCS deployed on alternate route US 52 shows a 47% reduction in the likelihood of freeway secondary 

crashes. The research team further investigated Charleston I-26 E using a random-parameter binary 

logistic regression model to explore the unobserved heterogeneity and finds that 84% of all observations 

have negative coefficients associated with the presence of ASCS deployed on the alternate route, 

suggesting an association between the presence of ASCS deployed on an alternate route and reduction in 

the likelihood of secondary crashes on the parallel freeway. The benefit of ASCS deployment on an 

alternate route towards freeway secondary crash reduction is found to be dependent on the location of the 
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primary crash as the location of the primary crash determines whether and how much of the upstream 

traffic will be able or choose to take the exit ramp to the ASCS deployed alternate route. Therefore, the 

findings provide new insight on improving safety on a freeway with the implementation of ASCS on 

arterials that could be used as alternate routes during an incident on the freeway. The results also reveal 

that other contributing factors, such as rear-end crash, light condition, peak period, weekday and AADT, 

may increase the likelihood of secondary crashes on a freeway.  

Analysis results indicate that there is an association between ASCS deployed on an alternate route 

and the likelihood of secondary crashes on the parallel freeway. Therefore, it is recommended that the 

SCDOT considers utilizing ASCS on corridors that are often used as alternate routes when there is an 

incident on the adjacent parallel freeways. According to the findings of this study, the existence of such 

an ASCS-deployed alternate route can help reduce the likelihood of secondary crashes and improve 

freeway safety. 
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CHAPTER 7 OPERATIONAL EVALUATION STUDY 
 

7.1 Introduction 

The objectives of this study are to evaluate the operational performance of ASCS corridors located 

throughout South Carolina using the following metrics: 1) effectiveness of ASCS in reducing travel time 

during the day and the peak periods, 2) effectiveness of ASCS in improving travel time reliability during 

the day and the peak periods, and 3) consistency of effectiveness of ASCS in both directions on an hourly 

basis on a corridor. This study also identifies the key corridor characteristics that contribute to higher 

ASCS operational benefits. The operational analysis is conducted using data from 11 corridors located 

throughout South Carolina that are operated with the SynchroGreen ASCS. 

7.2 Method 

 

An OFF and ON study was conducted to evaluate the operational effectiveness of ASCS. “ON” 

period refers to the time when ASCS is operational in the study corridors and the “OFF” period refers to 

the time when the signal control systems on the same study corridor use a predefined signal timing 

strategy, which could either be a pre-timed or an actuated signal timing plan based on the particular 

intersection on the corridor.  This study performs an operational evaluation of ASCS with multiple metrics: 

1) effectiveness of ASCS in reducing travel time during the day and during the peak periods, 2) 

effectiveness of ASCS in improving travel time reliability during the day and the peak periods, and 3) 

consistency of effectiveness of ASCS in both directions on a corridor. To analyze these metrics, the 

research team uses different statistical methods such as paired t-test, meta-analysis, and tetrachoric 

correlation analysis (Jin et al., 2021). This study also identifies the key corridor characteristics that can 

help produce higher ASCS operational benefits by using a multiple linear regression model (Jin et al., 

2021).  

7.2.1 Paired T-test and Meta-analysis 

To test whether the travel time and buffer index for the ON period is statistically different from 

that for the OFF period over 24 hours of a day, the research team conducted a paired t-test for each corridor 

and obtained a p-value for each corridor. Then, the research team combined all p-values by conducting a 

meta-analysis. Fisher’s method is considered in the meta-analysis (Dewey, 2017; Fisher, 1992). Fisher’s 

method relies on the fact that, 
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where 2

2k has a chi-squared distribution with 2k  degrees of freedom, jp is the p-value for thj  

paired t-test for the corresponding study site, k is the number of paired t-tests. In this study, both directions 

for a corridor are considered as two different study sites. Therefore, there are 22 paired t-tests to be 

conducted for 22 study sites in this study.  Eq. (24) is used to determine the p-value for the hypothesis test 

combining the individual t-tests. 
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7.2.2 Tetrachoric Correlation Analysis 

To investigate whether the operational effectiveness of ASCS is consistent for both directions on 

a corridor, the research team uses tetrachoric correlation analysis to explore two binary variables that are 

outcomes of the operational effectiveness of ASCS for the two directions. The purpose of doing tetrachoric 

correlation analysis is to present the temporal pattern of the operational effectiveness of ASCS in both 

directions on an hourly basis for the corridors in this study. For example, there are two possible outcomes 

(i.e., ASCS is effective or not effective) for each of the two directions (i.e., westbound and eastbound) on 

a corridor. The research team used the “tetrachoric” function in the “psych” package (Revelle, 2019) in 

the open-source R software to perform the tetrachoric correlation analysis.   

7.2.3 Multiple Regression Analysis 

To explore the relationship between the operational benefit of ASCS and corridor characteristics, 

the research team develops a multiple linear regression model using corridor characteristics as explanatory 

variables and the number of hours during a day when ASCS is effective in travel time reduction as the 

response variable. Table 18 summarizes the variables considered in the regression model in this study. 

Among the corridor characteristics for each corridor, the research team considers the 2018 AADT, 

the number of signals on a corridor, signal density (i.e., number of signals divided by the length of the 

corridor), and the average speed of the vehicles on a corridor. In the multiple linear regression model, the 

research team uses the information related to these corridor characteristics to create the following four 

binary explanatory variables: “AADT_2018_over_30k”, “No_of_signals_over_10”, 

“Signal_density_over_2_69”, and “Average_speed_over_35”. The thresholds utilized to define these 

dummy explanatory variables are obtained by determining the median of the corresponding corridor 

characteristics. For example, “AADT_2018_over_30k” is a dummy variable, which is one if the average 

AADT of a corridor of 2018 is over 30,000 vehicles/day. Here, 30,000 vehicles/day is the median of 

AADTs of the corridors of 2018 considered in this study. Therefore, the threshold to define the dummy 

variable “AADT_2018_over_30k” is chosen to be 30,000 vehicles/day. Thus, “AADT_2018_over_30k” 

is one for a corridor, if AADT of 2018 for that corridor exceeds 30,000 vehicles/day and 

“AADT_2018_over_30k” is zero for a corridor if AADT of 2018 for that corridor is less than or equal to 

30,000 vehicles/day. Similarly, the medians for the number of signals, signal density, and average speed 

are 10, 2.69 signals/mile, and 35 mph, respectively, which are used as the thresholds to define the 

corresponding dummy variables “No_of_signals_over_10”, “Signal_density_over_2_69”, and 

“Average_speed_over_35”, respectively. 
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Table 18 Summary of the model variables for multiple linear regression modeling 

Category Variable name Description 

Response variable Number_of_Hours 
Number of hours during a day when travel time for ASCS ON period is 

less than ASCS OFF period 

Explanatory 

variables 

AADT_2018_over_30k 

1 - AADT of 2018 is over 30,000 vehicles/day 

0 - otherwise 

No_of_signals_over_10 

1 - No. of signals is over 10 

0 - otherwise 

Signal_density_over_2_69 

1 - Signal density is over 2.69 signals/mile 

0 - otherwise 

Average_speed_over_35 

1 - Average speed is over 35 mph 

0 - otherwise  

 

A full multiple linear regression model that includes all the explanatory variables listed in Table 

18 can be expressed as follows, 
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Where, iy  is the response variable (i.e., Number_of_Hours); i  is each observation; n is the 

coefficient of the thn  explanatory variable, and ie  is error term of the model. 

The research team uses the multiple linear regression model, “lm” function in the open-source R-

software package (Dessau & Pipper, 2008) to perform the multiple linear regression. Among different 

candidate models, a model with the lowest Akaike Information Criterion (AIC) is preferred.  

7.2.4 Data Processing 

To perform ON and OFF analysis, the research team requested the South Carolina Department of 

Transportation (SCDOT) to turn off the ASCS on each corridor, so that travel time data for both the ON 

and OFF periods could be collected. Later, SCDOT provided several corridors where ASCS was recently 

installed. In this case, the period after ASCS was installed on these corridors is considered as the ON 

period while the period before ASCS was installed on these corridors is considered as OFF period. Based 

on the period during which ASCS was not operational, the research team identified the ON period and 
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OFF period for these corridors. The ON and OFF periods for each study corridor are listed in Table 19. 

The research team kept the ON and OFF periods as close as possible to make sure that the traffic conditions 

remained similar. The authors used hourly traffic volume data provided by the Iteris ClearGuide system 

(Iteris, 2020) and performed a t-test to determine if there was a statistical difference in traffic conditions 

between the ON period and OFF period for the corridors in this study. As shown in the last column in 

Table 20, the p-value is larger than 0.05 for all the corridors in this study. A p-value larger than 0.05 

indicates that the research team could not reject the null hypothesis in the t-test. Therefore, the research 

team cannot reject the null hypothesis that traffic volumes between the ON period and OFF period are the 

same for the corridors considered in this study at a 0.05 significance level. The results indicate that there 

is no difference in traffic conditions between the ON period and OFF period for the corridors in this study 

at a 0.05 significance level. Thus, the ON period and OFF period are considered similar and therefore 

comparable for all the study corridors. The research team uses one week for the ON period and one week 

for the OFF period. Only weekdays are considered, and holidays are avoided. The research team collected 

the travel time data for each direction of a corridor for both ON and OFF periods from the Iteris ClearGuide 

system (Iteris, 2020), which provides travel time data for every five minutes for both ON and OFF periods.  

Also, evaluating the travel time reliability is crucial because travelers are sensitive to unexpected 

traffic conditions. Buffer index is a travel time reliability index. The buffer index is calculated using travel 

time data. Buffer index (Florida Department of Transportation, 2016) is calculated as follows: 

 
95 percentile of travel time - average travel time

Buffer Index
free flow travel time

th

=  (26) 

Hourly average travel time and buffer index are calculated using traffic time data in five-minute 

granularity for both ON and OFF periods. Lower hourly travel time or lower buffer index for the ON 

period compared to the OFF period indicates that the ASCS is effective in reducing the travel time or 

improving the travel time reliability, respectively, on that corridor. 

Table 19 ON and OFF periods for ASCS corridors 

Location Corridor 
ON period 

(Start date - End date) 

OFF period 

(Start date - End date) 

Greenville 

US 29 (St Mark Rd. to 

Hampton Rd.) 
2/3/2020 - 2/7/2020 11/4/2019 - 11/8/2019 

US 29 (Groce Rd. to J. Verne 

Smith) 
2/3/2020 - 2/7/2020 11/4/2019 - 11/8/2019 

US 29 (Franklin Ave. to 

Tucapau) 
2/3/2020 - 2/7/2020 11/4/2019 - 11/8/2019 

Clemson 
US 123 2/3/2020 - 2/7/2020 10/7/2019 - 10/11/2019 

College Ave. 2/3/2020 - 2/7/2020 10/7/2019 - 10/11/2019 
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Location Corridor 
ON period 

(Start date - End date) 

OFF period 

(Start date - End date) 

Lexington 
US 378 (Hebron Dr. to 

Hummingbird Dr.) 
11/4/2019 - 11/8/2019 10/7/2019 - 10/11/2019 

Charleston 

SC 642 9/9/2019 - 9/13/2019 9/10/2018 - 9/14/2018 

US 52 9/23/2019 - 9/27/2019 9/30/2019 - 10/4/2019 

Summerville US 17A 9/10/2018 - 9/14/2018 9/9/2019 - 9/13/2019 

Pawleys Island US 17 10/21/2019 - 10/25/2019 10/28/2019 - 11/1/2019 

Garden City/Surfside US 17 Business 10/21/2019 - 10/25/2019 10/28/2019 - 11/1/2019 

 

Table 20 Average hourly traffic volumes for ON period and OFF period and t-test result 

Location Corridor Direction* 

ON period 

average hourly 

traffic volume 

(vehicle/h) 

OFF period 

average hourly 

traffic volume 

(vehicle/h) 

p-value of the t-test 

Greenville 

US 29 (St. Mark 

Rd. to Hampton 

Rd.)  

EB 657 656 0.997 

WB 659 659 0.998 

US 29 (Groce Rd. 

to J. Verne Smith)  

EB 509 509 0.997 

WB 471 471 0.998 

US 29 (Franklin 

Ave. to Tucapau) 

EB 751 751 0.999 

WB 752 751 0.997 

Clemson  

US 123 
EB 613 609 0.928 

WB 612 611 0.986 

College Ave. 
NB 240 239 0.952 

SB 240 238 0.942 

Lexington 

US 378 (Hebron 

Dr. to 

Hummingbird Dr.) 

EB 577 574 0.948 

WB 579 576 0.955 

Charleston 

SC 642 
EB 841 841 1.000 

WB 841 841 1.000 

US 52 
EB 1049 1031 0.843 

WB 805 794 0.853 
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Location Corridor Direction* 

ON period 

average hourly 

traffic volume 

(vehicle/h) 

OFF period 

average hourly 

traffic volume 

(vehicle/h) 

p-value of the t-test 

Summerville US 17A 
EB 836 837 0.997 

WB 829 829 1.000 

Pawleys Island US 17 
EB 814 844 0.645 

WB 810 844 0.624 

Garden 

City/Surfside 
US 17 Business 

EB 577 598 0.651 

WB 568 593 0.617 

*Note: EB=Eastbound; WB=Westbound; NB=Northbound; SB=Southbound 

7.3 Data Description 

In this study, data from 11 ASCS corridors were used to conduct operational analysis. All study 

corridors are operated by SynchroGreen.  As shown in Figure 14, the corridors with SynchroGreen are 

located throughout South Carolina. As presented in Figure 14, the corridor length is between 0.45 and 

nine miles. The average AADT of the corridors ranges from 16,000 to 49,000 vehicles/day in 2018. In 

this study, the speed limit of a corridor is estimated as a weighted average of speed limits of different 

roadway segments on a corridor. The estimated weighted-average speed limits of the corridors are between 

35 and 48.7 mph. The number of signals in each of the corridors is between three and 18. The average 

signal distance (i.e., the spacing of two successive signalized intersections on a corridor) of a corridor is 

between 0.20 and 1.07 miles.  Thus, some corridors have intersections that are in close proximity to each 

other, while other corridors have intersections that are far apart. Other corridor characteristics, such as 

average travel time and average travel speed, are also presented in Table 21. 
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Figure 14 Location of ASCS corridors in South Carolina 
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Table 21 Corridor characteristics  

Corridor name 
AADT 

(vehicles/day) 
Length (miles) 

# of 

signals 

Average 

speed 

limit 

(mph) 

Average 

signal 

distance 

(miles) 

Average 

travel 

time 

(min) 

Average 

speed 

(mph) 

US 29 (St. Mark Rd. 

to Hampton Rd.) 
 

33,333 5.2 14 46.3 0.40 
EB: 8.3 

WB: 8.4 

EB: 37.6 

WB: 37.1 

US 29 (Groce Rd. to  

J. Verne Smith) 
 

18,700 3.12 5 47.4 0.78 
EB: 4.7 

WB: 4.5 

EB: 39.8 

WB: 41.6 

US 29 (Franklin 

Ave. to Tucapau) 
 

22,100 5.33 6 47.4 1.07 
EB: 7.3 

WB: 7.2 

EB: 43.8 

WB: 44.4 

US 123 31,300 0.92 3 40 0.46 
EB: 1.7 

WB: 1.8 

EB: 32.7 

WB: 30.7 

College Ave. 16,750 0.45 3 35 0.23 
NB: 1.3 

SB: 1.4 

NB: 20.3 

SB: 19.3 

US 378 27,500 1.77 10 40.8 0.20 
EB: 3.3 

WB: 3.4 

EB: 32.0 

WB: 31.1 

SC 642 38,123 9 18 48.7 0.53 
 EB: 13.9 

 WB: 14.9 

EB: 38.8 

WB: 36.2 

US 17A 33,062 3 12 39.1 0.27 
 EB: 7.3 

WB: 8.1 

EB: 24.7 

WB: 22.2 

US 52 48,651 5 17 45 0.31 
EB: 9.0 

WB: 9.3 

EB: 33.3 

WB: 32.3 

US 17 37,899 3.7 6 41.8 0.74 
EB: 5.6 

WB: 5.5 

EB: 39.6 

WB: 40.4 

US 17 Business 28,533 5.3 9 45 0.66 
EB: 8.9 

WB: 9.0 

EB: 35.7 

WB: 35.3 

*Note: EB=Eastbound; WB=Westbound; NB=Northbound; SB=Southbound 
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7.4 Results 

 

7.4.1 Effectiveness of ASCS in Reducing Travel Time  

Figure 15 shows which period ASCS is effective in reducing the travel time over 24 hours. As 

shown in Figure 15, on average, 61% of the time during a day, ASCS is effective in reducing travel time 

for the study corridors. Peak periods are identified for each corridor and each direction. It is found that in 

77% of the time during the peak periods, ASCS is effective in reducing travel time. Evaluation results of 

travel time for all corridors are shown in APPENDIX D-1. As indicated by the results marked in red in 

Figure 15, the percentage of time when ASCS is effective during the peak periods is lower than 50% on 

US 17 in Pawleys Island and on US 17 Business in Garden City/Surfside, indicating that ASCS is not 

effective during the peak periods on these two corridors. It is noted that these two corridors are in cities 

frequented by tourists. The possible reason for finding low percentages of time during the peak periods 

when ASCS is effective for these two corridors is that traffic conditions during the peak periods vary 

minimally by the hour.  

 

Figure 15 Time periods during 24 hours of a day in which ASCS is effective in reducing the travel time 
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To test whether the travel time for the ON period is statistically different from that for the OFF 

period over 24 hours, the research team conducted a paired t-test for each corridor and obtained the p-

value for each corridor. As an example, Figure 16(a) shows the average travel times for the ON period 

and OFF period during a day for SC 642 eastbound. The p-value obtained by the paired t-test for SC 642 

eastbound is 2.23 E-02. The research team performed paired t-tests for all the study corridors to obtain p-

values, as shown in Figure 16(b), and combined all p-values using meta-analysis (i.e., Fisher’s method) 

as described in the “7.2 Method” section. The combined p-value (i.e., 6.72 E-19) determined by using Eq. 

(24) is less than 0.05. Therefore, it is concluded that travel time for the ON period is statistically different 

from travel time for the OFF period at a 0.05 significance level. The average travel time of all the study 

corridors is 6.39 and 6.83 minutes for ON and OFF periods, respectively, indicating that ASCS is effective 

in reducing the travel time by 6.4%. Travel time reduction due to ASCS during the peak period is 8.6%, 

while travel time reduction due to ASCS during the off-peak period is 6.0%. The result indicates that 

ASCS brings higher operational benefits during the peak period compared to the off-peak period. 
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Figure 16 Paired t-test results for travel time 

7.4.2 Effectiveness of ASCS in Improving Travel Time Reliability 

Figure 17 shows periods in which ASCS is effective in reducing the buffer index during a day. As 

shown in Figure 17, on average, 53% of the time during a day, ASCS is effective in reducing the buffer 

index for our study corridors. Peak periods are identified separately for each direction for each corridor. 

In 52% of the time during the peak periods, ASCS is effective in reducing the buffer index. Evaluation 

results of buffer index for all corridors are shown in APPENDIX D-1. As indicated by the results marked 

in red in Figure 17, the percentage of reducing the buffer index during the peak period is lower than 50% 

for both directions on US 29 in Greenville and US 17 in Pawleys Island. The results indicate that ASCS 

is not effective in terms of improving travel time reliability during peak periods on these two corridors. A 
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possible reason is that the traffic demand during peak periods vary minimally compared to the other hours 

of the day.  

 

Figure 17 Time periods in 24 hr. in which ASCS is effective in reducing the buffer index 

To test whether the travel time reliability for the ON period is statistically different from that for 

the OFF period over 24 hours, the research team conducted a paired t-test for each corridor and obtained 

the p-value for each corridor. As an example, Figure 18(a) shows buffer indexes for the ON period and 

OFF period over 24 hours for US 29 westbound (Franklin Ave. to Tucapau). The p-value that is obtained 

by the paired t-test for US 29 westbound (Franklin Ave. to Tucapau) is 0.002. The research team 

performed paired t-tests for other corridors to obtain the p-values, as shown in Figure 18(b), and combined 

all p-values using meta-analysis, as discussed in the “7.2 Method” section. The combined p-value (i.e., 

7.51 E-13) determined by Eq. (24) is less than 0.05. Therefore, it is concluded that travel time for the ON 

period is statistically different from that for the OFF period at a 0.05 significance level. The average buffer 

index of all corridors is 0.24 and 0.35 for ON and OFF periods, respectively, indicating that ASCS is 

effective in improving the travel time reliability by 31.4%. The buffer index reduction due to ASCS during 

the peak period is 35.7%, while the buffer index reduction due to ASCS during the off-peak period is 

30.0%. The result indicates that ASCS brings higher operational benefits during the peak period compared 

to the off-peak period. 
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Figure 18 Paired t-test results for the buffer index 

7.4.3 Consistency of Effectiveness of ASCS in terms of Travelling Directions 

The research team explored the consistency of effectiveness of ASCS in terms of reducing the 

travel time for both directions of traffic through the same corridor. In Figure 19, the colored areas present 

the hours during a day for each corridor when ASCS is found to be effective for travel time reduction. The 

brown-shaded areas in Figure 19 present the hours during a day when ASCS is effective in travel time 

reduction for eastbound or northbound corridors, whereas the purple-shaded areas present the hours during 

a day when ASCS is effective for westbound or southbound corridors. To better understand the association 

between the effectiveness of ASCS in reducing travel time for the two opposing directions of traffic on a 

corridor, Figure 19 also presents the tetrachoric correlation coefficients of the eleven corridors analyzed 
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in this study. Out of the eleven corridors, one corridor (i.e., US 17A) shows strong association (i.e., the 

absolute value of the tetrachoric correlation coefficient is greater than 0.8), seven corridors show moderate 

associations (i.e., the absolute value of the tetrachoric correlation coefficient is between 0.3 and 0.8), and 

three corridors show weak association (i.e., the absolute value of the tetrachoric correlation coefficient is 

less than 0.3) in direction-wise comparison of travel time reduction. As eight of the eleven corridors show 

moderate to strong associations, the implication is that for more than 80% of the observed cases, the 

effectiveness of ASCS in terms of travel time reduction is consistent for both directions of a corridor. 

 

Figure 19 Direction-wise comparison of the effectiveness of ASCS in terms of travel time reduction 

The research team also explored the consistency of effectiveness of ASCS in terms of reducing 

the buffer index for both directions of traffic through the same corridor. In Figure 20, the colored areas 

present the hours during a day for each corridor when ASCS is found to be effective for buffer index 

reduction. The brown-shaded areas in Figure 20 present the hours during a day when ASCS is effective 

in buffer index reduction for eastbound or northbound corridors, whereas the purple-shaded areas present 

the hours when ASCS is effective for westbound or southbound corridors. Here, the association between 

the effectiveness of ASCS in reducing the travel time for two opposing directions of traffic is presented 

in the figure using the tetrachoric correlation coefficient. As observed from Figure 20, based on the 

tetrachoric correlation coefficients, only five out of the eleven corridors shows moderate associations (i.e., 
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the absolute value of the tetrachoric correlation coefficient is between 0.3 and 0.8), and six corridors show 

weak associations (i.e., the absolute value of the tetrachoric correlation coefficient is less than 0.3) in 

direction-wise comparison of buffer index reduction. The implication is that ASCS is not consistently 

effective for both directions of the traffic of the same corridor in terms of reducing the buffer index. 

 

Figure 20 Direction-wise comparison of the effectiveness of ASCS in terms of buffer index reduction 

7.4.4 Relationship between Operational Benefits of ASCS and Corridor Characteristics 

The research team applied a multiple linear regression model to investigate the relationship 

between the operational benefit of ASCS (i.e., travel time reduction) and corridor characteristics, as 

explained by Eq. (25). Two variables- “Average_speed_over_35” and “No_of_signals_over_10” are 

found to be statistically significant. As the coefficient of “Average_speed_over_35” in the model is 

negative (i.e., -5.737), it indicates that if the average speed of an ASCS corridor exceeds 35 mph, then 

ASCS is less effective in reducing the travel time during a day compared to the case when the average 

speed is equal to or lower than 35 mph. The coefficient of “No_of_signals_over_10” is positive (i.e., 

3.697), it indicates that if an ASCS corridor has more than 10 signals, then ASCS is more effective in 

reducing travel time during a day compared to the case when the number of signals in the ASCS corridor 

is equal to or less than 10. 
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7.5 Chapter Conclusions 

This study evaluates the operational effectiveness of ASCS corridors located throughout South 

Carolina. This study evaluates the operational effectiveness of ASCS in terms of travel time reduction and 

travel time reliability improvement for 11 ASCS corridors, with a total of 102 intersections throughout 

South Carolina. In addition, the consistency of the operational effectiveness of ASCS in both directions 

on an hourly basis on a corridor has been evaluated.  

Our analyses reveal that when ASCS is operational, it reduces travel time by 6.4% and improves 

the travel time reliability by 31.4% in a corridor compared to when a non-ASCS traffic signal control 

system is operational (i.e., when the signal control systems on the same study corridor use a predefined 

signal timing strategy, which could be either a pre-timed or actuated signal timing plan based on the 

particular intersection on the corridor). Paired t-tests and meta-analysis indicate that the reduction of 6.4% 

in travel time and improvement of 31.4% in travel time reliability due to ASCS is statistically significant. 

Based on the operational analysis results, it is concluded that ASCS is effective in reducing travel time, 

on average, 61% of the time during a day, and 77% of the time during peak periods on a corridor. ASCS 

is effective in improving travel time reliability, on average, 53% of the time during a day and 52% of the 

time during peak periods. The effectiveness of ASCS in reducing travel time is consistent in both 

directions on a corridor for eight ASCS corridors out of 11, whereas the effectiveness of ASCS in 

improving travel time reliability is consistent in both directions on a corridor for only five ASCS corridors 

out of 11.  

This study also explores the relationship between ASCS operational benefits and different corridor 

characteristics by using a multiple linear regression model. It is found that ASCS produces higher 

operational benefits if the average speed of an ASCS corridor is equal to or lower than 35 mph, and the 

number of signals on an ASCS corridor exceeds 10. Based on the analyses conducted in this study, it is 

recommended that ASCS be considered to be deployed on a signalized corridor if: 1) the average speed 

of vehicles on a corridor is equal to or lower than 35 mph, 2) multiple peak periods (i.e., AM, Noon, or 

PM) exist on a corridor, 3) the traffic conditions are variable or fluctuate by the hour, and 4) the number 

of traffic signals on a corridor exceeds 10.  

. 
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 
 

8.1 Conclusions 

The research team investigated the safety effects of ASCS on crash frequency, crash severity, and 

the likelihood of secondary crashes on freeways with alternate routes where ASCS has been deployed. 

The research team also assessed the operational effectiveness of ASCS. The research team recommended 

the types of corridors that are best suited for ASCS implementation for traffic safety and operational 

improvement. 

The nation-wide survey results showed that most states have considered or studied ASCS, though 

many have not implemented ASCS. The survey also identified corridor characteristics, such as the design 

speed and AADT of an ASCS corridor, which would allow for the best operational and safety outcomes.  

The research team evaluated the safety effects of ASCS on crash frequency at 11 ASCS corridors 

that have a total of 109 signalized intersections by developing a Fully Bayesian (FB) framework for the 

before-and-after study. Based on the evaluation results, ASCS was found to reduce crashes for most of 

the corridors and intersections. It was also found that the safety effectiveness of ASCS varied across the 

intersections with different features, such as AADT at a major street and the speed limit at a major street.  

The research team investigated the effects of ASCS on the crash severity at 11 ASCS corridors 

that have a total of 109 signalized intersections by developing random-parameter ordered regression 

models. The analyses revealed that the presence of ASCS was associated with lower crash severity. Two 

practical implications were found: 1) when the speed limit difference between major streets and minor 

streets at an ASCS intersection is equal to or greater than 10 mph, and the average signal distance on an 

ASCS corridor is less than the threshold of 0.49 miles, ASCS was more likely associated with lower crash 

severity, and 2) when speed limit difference between major streets and minor streets at an ASCS 

intersection is less than 10 mph, and the average signal distance on an ASCS corridor is less than the 

threshold of 0.69 miles, ASCS was associated with lower crash severity.  

The research team found a unique interrelation between ASCS deployed on alternate routes and 

the likelihood of parallel freeway secondary crashes. The analysis showed that a 47% reduction in the 

likelihood of freeway secondary crashes for I-26 (Eastbound) was associated with an ASCS deployed on 

alternate route US 52. The benefit of ASCS deployment on an alternate route for freeway secondary crash 

reduction was found to be dependent on the location of the primary crash as it determines how much of 

the upstream traffic will be able to or elect to take the exit ramp to the ASCS deployed alternate route.   

The research team evaluated the operational effectiveness of ASCS in terms of travel time 

reduction and travel time reliability improvement for 11 ASCS corridors that have a total of 102 

intersections. In addition, the consistency of the operational effectiveness of ASCS in both directions on 

an hourly basis on a corridor was evaluated. The results indicated that when ASCS was operational, it 

reduced travel time by 6.4% on average and improved the travel time reliability by 31.4% on average for 

all the study corridors, compared to when ASCS was not operational (i.e., when the signal control systems 

on the same study corridor use a predefined signal timing strategy, which could be either a pre-timed or 
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actuated signal timing strategy based on the particular intersection on the corridor). Based on the 

operational analysis results, it was concluded that ASCS was effective in reducing travel time in a corridor, 

on average, 61% of the time during a day, and 77% of the time during the peak periods. ASCS was 

effective in improving travel time reliability, on average, 53% of the time during the day and 52% of the 

time during the peak periods. The effectiveness of ASCS in reducing travel time was consistent in both 

directions on an hourly basis for eight ASCS corridors out of 11, whereas the effectiveness of ASCS in 

improving travel time reliability was consistent in both directions on an hourly basis for only 5 ASCS 

corridors out of 11. The research team also explored the relationship between ASCS operational benefits 

and different corridor characteristics. It was found that ASCS produced higher operational benefits if the 

average speed of an ASCS corridor is equal to or lower than 35 mph, and the number of signals on an 

ASCS corridor exceeds 10. 

Figure 21 highlights the safety and operational impacts of ASCS at the study corridors as revealed 

in this study.  
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Figure 21 Safety and operational impacts of adaptive signal control systems at study corridors 
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8.2 Recommendations for Implementation  

The research team provides the following recommendations for SCDOT’s consideration in 

implementing ASCS based on findings from the safety analysis, operational analysis, and state DOTs 

survey.  

While Considering Traffic Safety  

The research team recommends SCDOT to select future ASCS deployment sites, for improving 

traffic safety,  by considering intersection and corridor features such as AADT at major roads, speed limits 

at major roads and minor roads, intersection geometry, average signal distance on a corridor, and whether 

the corridor could be used as a detour route when there is an incident on the freeway.  

Based on the findings of the crash frequency study, the research team recommends that ASCS be 

considered for deployment on a corridor if: 1) AADT on major roads is between 20,000 vehicles/day and 

50,000 vehicles/day, and 2) speed limits on major roads are between 40 and 55 mph. Assuming that the 

above conditions are met, ASCS is effective regardless of intersection geometry (i.e., four-legged or T-

intersections). 

Based on findings of the crash severity study, the research team recommends that ASCS be 

considered for deployment on a corridor if the speed limit difference between a major street and a minor 

street at an intersection is equal to or greater than 10 mph, and the average signal distance on a corridor is 

less than 0.49 miles. The research team also recommends that ASCS be considered for deployment on a 

corridor if the speed limit difference between a major street and a minor street at an intersection is less 

than 10 mph, and the average signal distance on a corridor is less than 0.69 miles. 

Based on the findings of the secondary crash study, the research team recommends that ASCS be 

considered for deployment on an alternate route to a freeway if the corridor is often used by commuters 

in the event of an incident on the freeway. 

While Considering Traffic Operations 

The research team recommends SCDOT to select ASCS deployment sites, for operational 

improvements, by considering corridor features such as the design speed of a corridor, the average speed 

of vehicles on a corridor, AADT of a corridor, the number of traffic signals on a corridor, presence of 

multiple peak periods on a corridor, and traffic conditions on a corridor.  

Based on the findings of the nation-wide survey, the research team recommends that ASCS be 

considered for deployment on a corridor if the design speed of the corridor is between 30 and 45 mph and 

the average AADT of the corridor is between 30,000 and 50,000 vehicles/day. 

Based on findings of the operational evaluation study, the research team recommends that ASCS 

be considered for deployment on a corridor if: 1) the average speed of vehicles on a corridor is equal to or 

lower than 35 mph, 2) the number of traffic signals on a corridor is more than 10, 3) there are multiple 

peak periods (AM, Noon, or PM) on the corridor, and 4) the traffic conditions are variable or fluctuate by 

the hour. 
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CRASH FREQUENCY STUDY 
 



 A-1 

APPENDIX A-1 DATA DESCRIPTION 

Table A-1 Descriptive statistics of intersection geometric features and speed limits data 

Variables 
Before period After period 

Mean S.D.* Min Max Mean S.D.* Min Max 

Number of legs at intersections 3.82 0.38 3 4 3.8 0.4 3 4 

Number of through lanes on major streets 5.37 1.44 2 8 5.29 1.28 2 8 

Number of the exclusive right-turn lanes on major 

streets 
1.2 0.8 0 2 1.16 0.84 0 2 

Number of the exclusive left-turn lanes on major 

streets 
2.28 0.91 0 4 2.22 0.89 0 4 

Number of through lanes on minor streets 2.16 1.21 0 5 2.14 1.19 0 5 

Number of the exclusive right-turn lanes on minor 

streets 
1.02 0.7 0 2 0.87 0.75 0 2 

Number of the exclusive left-turn lanes on minor 

streets 
1.81 0.89 0 4 1.89 0.89 0 4 

Number of access points within the influence area 

of intersection on major streets 
3.03 1.75 0 7 3.27 1.8 0 7 

Number of access points within the influence area 

of intersection on minor streets 
2.38 1.92 0 7 2.39 1.88 0 7 

Speed limit on major streets (mph) 42.64 5 25 55 41.47 5.53 25 55 

Speed limit on minor streets (mph) 32.15 4.89 25 50 31.78 4.71 25 50 

* S.D.-Standard deviation 

Table A-2 Crash frequency (number of crashes per year) statistics for ASCS corridors 

Crash Types 
Before period After period 

Min Mean Max Stdv. Min Mean Max Stdv. 

US 17A 2011-2014 2016-2018 

Total Crash 5 19.40 52 12.04 7 29.5 86 17.65 

F+I 0 4.67 15 3.33 0 5.97 22 4.58 

Rear-end 1 9.96 35 8.13 1 14.06 50 10.50 

Angle 0 5.88 18 3.76 2 8.06 20 4.16 

SC 642 2011-2014 2016-2018 

Total Crash 0 13.32 51 13.07 0 15.13 68 12.46 

F+I 0 5.12 21 5.22 0 6.17 19 5.26 



 A-2 

Crash Types 
Before period After period 

Min Mean Max Stdv. Min Mean Max Stdv. 

Rear-end 0 6.43 24 5.8 0 7.83 30 5.42 

Angle 0 4.22 26 5.85 0 4.2 28 5.04 

Roper Mt Rd/Garlington Rd 2011-2015 2017-2018 

Total Crash 0 4.96 23 6.61 0 7.40 28 10.20 

F+I 0 0.68 4 1.22 0 0.90 3 1.20 

Rear-end 0 3.60 18 4.47 0 5.40 23 7.95 

Angle 0 1 8 1.96 0 1.40 7 2.37 

US 17 2011-2015 2017-2018 

Total Crash 2 11.70 51 11.14 4 15.75 36 9.74 

F+I 0 4.03 18 4.82 2 5.25 16 4 

Rear-end 0 6.17 32 6.89 1 9.75 26 8.15 

Angle 0 3 11 2.67 1 3.67 8 1.92 

US 52 2011-2015 2017-2018 

Total Crash 0 16.88 65 16.56 3 29.5 89 22.13 

F+I 0 6.67 34 7.92 2 12.15 38 10.13 

Rear-end 0 9.09 44 9.25 1 15.94 48 12.05 

Angle 0 3.94 23 4.55 1 6.76 21 6.15 

N. Lake Drive 2011-2014 2016-2018 

Total Crash 0 6.71 18 3.99 1 14.76 36 9.07 

F+I 0 1.71 6 1.78 0 4.43 17 4.78 

Rear-end 0 3.79 11 2.42 1 6.71 23 5.16 

Angle 0 1.82 5 1.44 0 4.29 11 3.36 

Long Point Rd 2012-2016 2018-2019 

Total Crash 0 7.83 23 5.66 3 11.42 24 5.98 

F+I 0 2.03 6 1.75 0 2.5 7 1.98 

Rear-end 0 3.47 10 2.87 1 5.58 18 4.56 

Angle 0 2.77 12 3.23 1 3.92 12 2.97 

Main Street 2012-2016 2018-2019 

Total Crash 5 15.48 39 9 7 20.7 38 10.78 

F+I 0 4.36 11 3.12 0 4.5 14 4.03 
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Crash Types 
Before period After period 

Min Mean Max Stdv. Min Mean Max Stdv. 

Rear-end 0 7.64 22 5.11 3 9.4 19 5.3 

Angle 1 4.84 13 3.35 1 5.5 13 3.84 

US 378 2012-2016 2018-2019 

Total Crash 1 11.57 40 9.38 2 13.43 29 9.02 

F+I 0 3.8 18 4.26 0 2.5 9 2.53 

Rear-end 1 6.14 18 4.12 2 7.14 13 3.53 

Angle 0 2.91 11 3.22 0 2.64 8 2.95 

US 17 Business 2012-2016 2018-2019 

Total Crash 2 16.56 34 9.32 0 9.89 21 7.13 

F+I 0 6.82 22 5.39 0 3.39 15 4.1 

Rear-end 1 7.13 17 3.76 0 4.33 12 3.41 

Angle 0 6.71 18 5.23 0 3.89 9 2.76 

Woodruff Rd 2012-2016 2018-2019 

Total Crash 2 23.68 52 11.77 8 27.09 53 12.28 

F+I 0 4.53 14 3.52 1 5.53 13 3.13 

Rear-end 0 13.79 36 8.09 2 14.56 43 8.79 

Angle 0 7.02 15 4.03 1 7.85 15 3.86 

* S.D.-Standard deviation 
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APPENDIX A-2 MODEL DEVELOPMENT AND EVALUATION 

PROCEDURE 

EB Model Development 

Model 1 (AADT+ Annual multipliers):   

, , ,0 , , ,min ,( ) exp( log(majorAADT ) log(minorAADT ))m it m t m m maj aadt m it m aadt m itE a   − −= + +  

(A-1) 

Model 2 (AADT+ Roadway factor+ Annual multipliers):   
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Model 3 (AADT+ Roadway factor+ Year):  
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where, ,majorAADTm it is AADT of major roads at the intersection i  on the corridor m  in 

a given year t; ,minorAADTm it is AADT of minor streets at the intersection i  on the corridor m  in 

a given year t; ,mn itX is the 
thn  explanatory variable of roadway geometric features (e.g., the 

number of exclusive left-turn, right-turn lane(s) and through lane(s) on major or minor streets and 

the number of access point(s) at an intersection) for the intersection i  in a given year t; Q is the 

total number of explanatory variables of roadway geometric features; ,m itT is the year factor which 

is numeric, for example, 0 if year is 2011, 1 if year is 2012, and so on; ,m T is the coefficient for 

the year factor of Model 3; ,m maj aadt − is the coefficient for AADT of major roads; ,minm aadt − is the 

coefficient for AADT of minor streets; ,0m is the intercept and ,m j is the thj  coefficient for 

roadway geometric features in the model; ,m ta is the annual multiplier which is obtained by 

dividing the sum of predicted number of crashes in a given year t  by the sum of observed crashes 

in a given year t  after the EB models are fitted.  

EB model estimation is performed in the R environment by calling the R package “MASS”. 

Concerns about multicollinearity (MC) occurs if an explanatory variable is a function of other 

explanatory variables. Potential MC issues are checked by evaluating the Variance Inflation Factor 

(VIF) statistic. VIF values greater than 10 are used to check whether MC is of concern (O’Brien, 

2007). Using this criterion, the research team finds that no MC issues exist among the explanatory 
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variables used in this study. Akaike’s Information Criterion (AIC) is used to select the set of 

variables used in the regression models (Bumham & Anderson, 2002). The best-fitted model is 

found with the lowest AIC. For example, roadway geometric features have some variables, 

including the number of exclusive left-turn lanes, right-turn lanes, and through lanes on major or 

minor streets and the number of the access points at an intersection. After model selection based 

on AIC, only a few roadway geometric variables will be kept.  

EB Before-and-After Evaluation Procedure  

The expected number of crashes in the before period for a site bE , , is obtained by 

combining two different information: 1) the observed crash data for a site, bO , and 2) the sum of 

the predicted number of crashes during the before period, bP , estimated by the crash prediction 

models (i.e., Model 1, Model 2, and Model 3) for the individual site. bE  is obtained by using the 

following equation (Hauer, 1997; Persaud & Lyon, 2007), 

 ( )1b b bE wP w O= + −   (A-4) 

The weight factor 𝑤 is estimated from 𝑃𝑏 and  , which are estimated from the SPF 

development,  
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where  is the value of the dispersion parameter obtained by the NB regression-based SPF.  

A correction factor that accounts for the length of the after period, changes in traffic 

volumes, and changes in roadway geometric characteristics is multiplied with bE to obtain the aE . 

This factor is the ratio of the sum of the after-period SPF predictions, aP  and the sum of the before-

period SPF predictions, bP . Thus, aE can be obtained below, 

 a
a b

b

P
E E

P
=   (A-6) 

The observed number of crashes at a site with treatment during the after period (𝑂𝑎) is then 

compared to the expected number of crashes on the same site (𝐸𝑎) which is the expected number 

of crashes that would have occurred if the treatment had not been implemented. An estimate of the 

index of safety effectiveness of treatment,  , is:    
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where, 
  aall
O is the summation of aO for all studied sites; 

aall
E is the summation of 

aE  for all studied sites.  

The estimated percentage of reduction in crashes is100(1 )− . For example, a value of 

0.45 =  indicates a 55 percent decrease in crashes with treatment. The uncertainty of the index 

of effectiveness (i.e., standard deviation) is calculated by taking the square root of the variance of 

 . The variance of   is (Hauer, 1997; Persaud & Lyon, 2007): 
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In the Eq. (A- 8), the assumption is that the ratio aP  to bP  is a constant variable, not a 

random variable, which would affect the Eq. (A-7) and Eq. (A-9) containing the term 

( )aall
Var E . 

FB Model Development 

A corridor-specific ASCS indicator variable ,Im it  that labels the after period during which 

ASCS is installed on the corridor m  is included as shown below (1 is the after period; 0 otherwise). 

m,I is the coefficient of the ASCS presence indicator variable of the following models. The 

research team initially included the interaction variables into the model to account for the possible 

interaction between ASCS and AADT and the interaction between ASCS and roadway geometric 

features in the model. But the interaction variables are not significant. Thus, the interaction 

variables are not used for the following models.  

Model 4A (AADT):  
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  (A-10) 

Model 4B (AADT +Spatial effect): 
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  (A- 11) 
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Model 5A (AADT+ Roadway factor):  
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Model 5B (AADT +Roadway factor+ Spatial effect):  
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Model 6A (AADT+ Roadway factor+ Year):  
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Model 6B (AADT+ Roadway factor+ Year+ Spatial effect):   
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where, ,m is could be considered as a latent variable that captures the effect of unknown or 

unmeasured covariates that are assumed spatially structured. The intrinsic Conditional 

Autoregressive (CAR) model (Besag et al., 1991) is used for estimating ,m is , which is given by:  
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  (A-16) 

where i is the set of intersections adjacent to i ; ijw  is a spatial proximity weight; s is the 

precision parameter which is the inverse of the variance. s is assumed to follow a prior Gamma 

(0.001, 0.001) (Cai et al., 2018). ijw is equal to 1 for ii ; otherwise, ijw is equal to 0. 

“OpenBUGS” is open-source software that performs Bayesian inference using the Gibbs 

sampling algorithm. Bayesian model estimation and MCMC simulation are performed in the R 
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environment by calling the R package “R2OpenBUGS”. For each FB model, two Markov chains 

are used in MCMC simulations. Each chain has 200,000 iterations and a total of 20,000 iterations 

are discarded during the burn-in (i.e., warm-up) period. Bayesian estimation provides posterior 

probability distributions and Bayesian Credible Intervals (BCI) for statistical inference. Before 

implementing the estimation of the posterior distribution of parameters of interest, convergence 

must be checked in the MCMC simulation. As a rule of thumb, Rhat statistics (i.e., scale reduction 

factor) less than 1.2 (Brooks et al., 1998) is used to identify convergence. Also, viewing graphical 

summaries and the number of effective samplings (i.e., the number of independent samples drawn 

from the posterior distribution in the MCMC simulation) for the parameters of interest could help 

to check the convergence. Deviance Information Criterion (DIC) can be used to determine the best 

set of predictors for each FB model (Spiegelhalter et al., 2002). In general, differences of more 

than 10 (DIC value) may suggest that the FB model with lower DIC is preferred  (Spiegelhalter et 

al., 2002). Also, the significance of the spatial effect is evaluated to determine if the spatial effect 

exits in the crash data. 

FB Before-and-After Evaluation Procedure 

In the FB before-and-after study procedure, Crash Reduction Rate (CRR) is calculated  

(Lan et al., 2009; Persaud et al., 2010; Yanmaz-Tuzel & Ozbay, 2010), as  
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aall

aall

O






 is similar to the index of the safety effectiveness used in the EB method.  

The observed number of crashes at a site with treatment during the after period ( aO ) is 

compared with the expected number of crashes on the same site ( a ) which is the number of 

crashes that would have occurred if the treatment had not been implemented. a can be obtained 

through developing crash prediction models (i.e., Model 4A, Model 4B, Model 5A, Model 5B, 

Model 6A, and Model 6B) in the FB procedure. 
  aall
 is the summation of a for all studied 

intersections on a corridor across studied years for corridor-specific safety effectiveness 

calculation or the summation of for a specific intersection across studied years for intersection-

specific safety effectiveness calculation. 

CRR is obtained directly by MCMC simulation. The uncertainty of CRR can be evaluated 

with a 95% BCI by MCMC simulation. The significance of CRR can be determined if the 95% 

BCI does not contain zero.  
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APPENDIX A-3 MODEL COMPARISON RESULTS 

 

Comparison of Potential Bias and Variance of Prediction 

As shown in Table A-3, the FB models have lower RMSE values than that of EB models 

in all scenarios involving different crash types and predictors. Lower RMSE values indicate lower 

potential bias and variance of prediction.   

Table A-3 RMSE for EB and FB models  

Model 

RMSE 

Total 

crash 
F+I 

Rear-

end 
Angle 

EB Models 

Model 1 (AADT + Annual SPF multipliers) 9.91 5.59 7.07 4.49 

Model 2 (AADT + Road + Annual SPF 

multipliers) 
9.83 5.59 6.92 4.44 

Model 3 (AADT + Road + Year) 9.75 5.54 6.67 4.43 

FB Non-spatial 

Models 

Model 4A (AADT) 1.23 1.04 1.31 1.09 

Model 5A (AADT + Road) 1.26 1.01 1.34 1.09 

Model 6A (AADT + Road + Year) 1.15 0.97 1.23 1.01 

FB Spatial Models 

Model 4B (AADT + Spatial effect) 1.24 0.97 1.30 1.03 

Model 5B (AADT + Road + Spatial effect) 1.31 0.98 1.34 1.05 

Model 6B (AADT + Road + Year + Spatial 

effect) 
1.22 0.91 1.24 0.95 

 

Safety Effect Estimation Comparison 

As shown in Figure A-1, Model 6A (AADT+ Roadway factor+ Year) and Model 6B 

(AADT+ Roadway factor+ Year+ Spatial effect) have the best estimation because the mean of the 

crash reduction percentage is quite close to zero (in the “rectangle” box in Figure A-1). This 

finding indicates that adding the year factor as a covariate into the FB non-spatial model and FB 

spatial model could improve the accuracy of estimation of the safety effectiveness of ASCS. So 

safety researchers and practitioners are encouraged to include the year factor in before-and-after 

evaluation studies. 

The difference in the mean of the crash reduction percentage between FB non-spatial 

models and FB spatial models is small. However, based on the FB spatial model estimation, the 

spatial effect is statistically significant, which indicates that the spatial effects exist. In addition, 

DIC is compared between FB non-spatial models and FB spatial models. The difference between 

the DIC of spatial and non-spatial models is more than 10 in all types of models, which indicates 
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that FB spatial models are preferred over the FB non-spatial models. Safety researchers and 

practitioners are encouraged to include the spatial effects in FB before-and-after evaluation studies.   

 

Figure A-1 Crash change percentage with 95% CI among EB models and with 95% BCI among FB models 
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APPENDIX B-1 DATA DESCRIPTION 

Table B-1 Peak periods for the study corridors 

Location Corridor name Peak period 

Greenville Roper Mt Rd./ Garlington Rd. 7:00 - 9:00 

16:00 -18:00 

Charleston  SC 642 6:00 - 8:00 

15:30 - 18:30 

Charleston  US 52 7:00 - 9:00 

14:00 - 18:00 

Lexington N. Lake Drive 7:00 - 9:00 

15:00 - 19:00 

Pawleys Island US 17  11:00 -15:00 

Summerville US 17A 11:00 -13:00  

16:00 -18:00 

Garden City/Surfside US 17 Business 11:00 – 13:00  

Lexington Main Street 6:00 – 8:00 

11:00 – 13:00 

16:00 – 18:00 

Lexington US 378 6:00 – 8:00 

12:00 – 14:00 

15:00 – 17:00 

Mount Pleasant Long Point Rd. 6:00 – 8:00 

11:00 – 13:00 

15:00 – 17:00 

Greenville Woodruff Rd. 7:00 – 9:00 

11:00 – 13:00 

15:00 – 17:00 
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Table B-2 Summary of descriptive statistics of response variables and significant explanatory variables 

Variable Definition 
Level/data 

type 
Before period After period 

   
Frequency 

(Percentage) 

Frequency 

(Percentage) 

Crash_Severity Crash Severity Outcome 

0 - O 3093 (77.7%) 2089(80.6%) 

1 - C 

 
631 (15.9%) 374 (14.4%) 

2 - KAB 255 (6.4%) 128 (4.9%) 

Light 
Dark (1 if dark, dawn, or dusk, otherwise 

0) 

1 912 (22.9%) 579(22.3%) 

0 3067 (77.1%) 2012(77.7%) 

ASCS 
The presence of ASCS (1 if Yes, 

otherwise 0) 

1 - 2591 (39.4%) 

0 3979 (60.6%) - 

Peak 
Peak period (1 if peak period, otherwise 

0) 

1 1075 (27.0%) 698 (26.9%) 

0 2904 (73.0%) 1893 (73.1%) 

Rear_end Rear-end (1 if rear-end, otherwise 0) 
1 2140 (53.8%) 1335(51.5%) 

0 1839 (46.2%) 1256(48.5%) 

Angle Angle (1 if angle, otherwise 0) 
1 1073 (27%) 672(25.9%) 

0 2906 (73%) 1919(74.1%) 

Pedestrian 
The presence of pedestrian (1 if 

pedestrian-involved, otherwise 0) 

1 21 (0.5%) 12 (0.5%) 

0 3958 (99.5%) 2579 (99.5%) 

AADT_over_30k 

AADT at a road on which a crash 

occurred (1 if greater than 30k, otherwise 

0) 

1 3256(81.8%) 2272 (87.7%) 

0 723 (18.2%) 319 (12.3%) 

S_Difover10 

Speed limit difference between major 

roads and minor roads at an intersection 

(1 if equal to or greater than 10 mph, 

otherwise 0) 

1 2894 (72.7%) 1882(70.3%) 

0 1085 (27.3%) 769(29.7%) 

   Mean (S.D*) Mean (S.D*) 

Speed_Limit Speed limit (mph) Numeric 40.71 (6.20) 39.83 (6.33) 

Signal Distance 
Average signal distance on a corridor 

(miles) 
Numeric 0.38 (0.12) 0.36 (0.12) 

* S.D.-Standard deviation 
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APPENDIX B-2 MODEL IMPLEMENTATION AND ESTIMATION 

The random-parameter ordered regression models are estimated through the SML 

procedure described in (Sarrias, 2016). R software is used to perform SML procedure to obtain 

model estimation results using the “Rchoice” library (Sarrias, 2016). 300 Halton draws are used 

in the SML procedure, which is in line with a previous study (Khattak et al., 2019). “Rchoice” 

library provides some options of distributions for random parameters, such as normal distribution 

and uniform distribution. Different distributions of random parameters are implemented and tested 

in the models. Eventually, the uniform distribution is used since it provides a better model fit. The 

signs of the coefficient of predictors are of particular interest. In the model estimation results in 

this study, a positive sign of the coefficient of predictors is associated with higher crash severity 

(i.e., C and KAB levels), whereas a negative sign of the coefficient is associated with lower crash 

severity (i.e., O level).  

The conditional mean of the parameters (Sarrias, 2016), conditional on the specific data of 

each crash is estimated by Simulated Maximum likelihood (SML) procedure, which is expressed 

as: 
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where, ˆ ˆ ˆˆ
ir i ir= + +β Πs Lωβ ; ˆ( | )irP i iy X ,β  is the estimated simulated probability for a 

crash i  evaluated at the thr  draw of iβ ; idata  represents the explanatory variables; R  is the total 

number of draws in the SML procedure.  The random draws are generated by a Halton random 

number generator with a standard uniform distribution, (0,1)U . Detail Halton draws procedure 

can be found in (Sarrias, 2016). 

The Variance Inflation Factor (VIF) is used to check for potential Multi-Collinearity (MC). 

Commonly a VIF of 10 has been used by many researchers as a rule of thumb to indicate severe 

MC issues (O’Brien, 2007). The best fit models are selected based on a comparison of the Akaike 

Information Criteria (AIC) (Burnham & Anderson, 2004), with the model with the lowest AIC 

value deemed the best fit model. Also, the likelihood ratio test (Washington et al., 2020) is used to 

select a model with better goodness of fit of the model. Three classification model performance 

metrics: accuracy, precision, and recall, which are widely used for evaluating a classification 

model, are used for evaluating the performance of the random-parameter ordered regression model 

(i.e., ordered probit or logit) with observed heterogeneity. A training dataset with 80% of the 

sample and a test dataset with 20% of the sample are obtained. The training dataset and test dataset 

are randomly sampled. During the sampling, both datasets are ensured to have similar percentages 

of data points by category (i.e., by crash severity outcomes). The sampling procedure is repeated 

30 times (Rahman et al., 2019; Xie et al., 2019). For each time, the model is developed using the 

training dataset, and then the model is evaluated using the test dataset. The accuracy, precision, 
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and recall are computed for the test dataset using Eq. (B-2) to Eq. (B-4) (Sammut Claude  and 

Webb, 2010; Ting, 2010).  

 Accuracy /CT N=  (B-2)                                                                                                                  

 Precision / ( )n n nTP TP FP= +  (B-3)                                                                                                       

                                               Recall / ( )n n nTP TP FN= +  (B-4)  

where, CT is the total number of correctly classified instances for all classes; N is the total 

number of instances for all classes; n is the class label (i.e., O, C, or KAB); nTP is true positive for 

the class label n ; nFP  is false positive for the class label n ; nFN  is false negative for the class label

n .Overall precision and recall are evaluated by computing the micro-average values of precision 

and recall (Van Asch, 2013), which are derived by Eq. (B-5) and Eq. (B-6). 

 

1 1 1
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T T T
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n n n

TP TP FP−

= = =

= +    (B-5)                                                                          

 

1 1 1

Recall / ( )
T T T

Micro average n n n

n n n

TP TP FN−

= = =

= +    (B-6)                                                                             

where, T is the total number of classes, including three classes (i.e., O, C, and KAB) in this 

study.  
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APPENDIX B-3 MODEL COMPARISON RESULTS 

The following four models are estimated and compared: 

• Random-parameter ordered probit model with observed heterogeneity (ROP) 

• Random-parameter ordered logit model with observed heterogeneity (ROL) 

• Random-parameter ordered probit model (RP) 

• Random-parameter ordered logit model (RL) 

In the model estimation results in Table B-3, a positive sign of the coefficient of predictors 

is associated with higher crash severity, while a negative sign of the coefficient is associated with 

lower crash severity. From the negative sign of the coefficient (i.e., -0.113 for the RP model and -

0.205 for the RL model) of ASCS variable in Table B-3, it shows that the presence of ASCS is 

associated with lower crash severity. Since the standard deviation associated with ASCS is found 

to be statistically insignificant in the RP, RL, ROP, and ROL models, ASCS is not considered as 

a random parameter for these models. Instead, ASCS is considered as a fixed parameter for the RP 

and RL models, and a varying parameter depending on intersection/corridor-level variables (i.e., 

S_Difover10 and Signal Distance) for the ROP and ROL models. Only the angle variable is 

considered as a random parameter with the mean (i.e., mean.Angle) and the standard deviation 

(i.e., S.D. Angle) in these models. Note that, the coefficient of the angle variable is a random 

parameter that follows a random distribution. As shown in Table B-3, the mean of the coefficient 

(mean.Angle) associated with angle is found to be positive and statistically significant in the ROP 

model. Its standard deviation (S.D.Angle) is also found to be statistically significant, implying the 

existence of unobserved heterogeneity across observations. The coefficient of the angle variable 

is estimated to follow a uniform distribution with a mean of 0.330 and a standard deviation of 

1.030. It is found that all observations have a positive coefficient associated with the angle crashes, 

suggesting an association between angle crashes and higher crash severity.   
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Table B-3 Model estimation results 

a: ROP stands for random-parameter ordered probit model with observed heterogeneity; ROL stands for random-

parameter ordered logit model with observed heterogeneity; RP stands for random-parameter ordered probit model; 

RL stands for random-parameter ordered logit model.  

b: estimated threshold in Eq. (12) – (13) 

c: mean of the coefficient 

d: observed variable used to capture the observed heterogeneity of ASCS 

e: standard deviation of the coefficient 

As indicated in the previous studies, the AIC difference between two competing models 

that is greater than 2 (Burnham & Anderson, 2004) or 2.5 (Hilbe, 2011) could be used as a 

threshold to distinguish different models. Based on the recommendation of these studies, the 

difference of AIC between two models greater than 2.5 is considered as the threshold to select the 

preferred models in this study. As indicated in Table B-4, the ROP and ROL models are better 

than the RP and RL models in terms of AIC. As indicated in Table B-4 (in the last two columns), 

 ROPa ROLa RPa RLa 

Coefficients Est. p-value Est. p-value Est. p-value Est. p-value 

Threshold, 1 b 0.858 < 0.001 1.675 < 0.001 0.855 < 0.001 1.671 < 0.001 

Constant -1.554 < 0.001 -2.822 < 0.001 -1.618 < 0.001 -2.947 < 0.001 

Pedestrian 2.078 < 0.001 3.711 < 0.001 2.061 < 0.001 3.660 < 0.001 

AADT_over_30k 0.235 < 0.001 0.425 < 0.001 0.225 < 0.001 0.405 < 0.001 

Speed_Limit 0.009 0.008 0.019 < 0.001 0.011 0.001 0.022 < 0.001 

Light 0.324 < 0.001 0.553 < 0.001 0.321 < 0.001 0.543 < 0.001 

Rear_end 0.133 0.006 0.319 < 0.001 0.134 0.005 0.318 < 0.001 

Peak -0.090 0.037 -0.178 0.027 -0.093 0.031 -0.183 0.023 

ASCS - - - - -0.113 0.002 -0.205 0.003 

mean.ASCSc -0.443 < 0.001 -0.799 < 0.001 - - - - 

mean.Anglec 0.330 < 0.001 0.416 0.016 0.331 < 0.001 0.501 < 0.001 

S_Difover10d 0.127 0.071 0.256 0.055 - - - - 

Signal Distanced 0.637 0.007 1.081 0.013 - - - - 

S.D.Anglee 1.030 < 0.001 2.532 < 0.001 1.018 < 0.001 1.369 < 0.001 

Log-Likelihood -4024  -4025  -4030  -4031  

Number of observations 6570  6570  6570  6570  

AIC 8076.28  8078.20  8082.41  8084.15  
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in terms of AIC, there are no significant differences between the ROP and ROL models, as well 

as between the RP and RL models. 

Table B-4 Model comparison based on AIC difference 

 Model comparisons 

 RL VS. ROL* RP VS. 

ROP* 

RL VS. 

ROP* 

RP VS. 

ROL* 

ROP VS. 

ROL* 

RP VS. 

RL* 

AIC difference 5.95 6.13 7.87 4.21 1.92 1.74 

Preferred model (with 

a lower AIC) 

ROL ROP ROP ROL No 

significant 

difference 

No 

significant 

difference 

*: ROP stands for random-parameter ordered probit model with observed heterogeneity; ROL stands for random-

parameter ordered logit model with observed heterogeneity; RP stands for random-parameter ordered probit model; 

RL stands for random-parameter ordered logit model. 

In addition to using AIC, a likelihood ratio test (Washington et al., 2020) for comparing 

nested models (i.e., RL VS. ROL, RP VS. ROP, RL VS. ROP, and RP VS. ROL) is conducted in 

this study to identify a superior model with better goodness of fit of the model, as shown in Table 

B-5. The likelihood ratio Chi-squared statistics are statistically significant at a 0.05 significance 

level, suggesting that the ROP and ROL models are better than the RP and RL models in terms of 

the goodness of fit of the model. The likelihood ratio tests are not conducted for comparing non-

nested models (i.e., ROP VS. ROL and RP VS. RL) as the likelihood ratio test does not apply to 

compare non-nested models. Based on both AIC (Table B-4) and the likelihood ratio test (Table 

B-5) findings, the ROP and ROL models are better than the RP and RL models in terms of both 

the AIC and goodness of fit of the model. 

Table B-5 Likelihood ratio test results for nested models 

 Model comparisons 

 RL VS. ROL* RP VS. ROP* RL VS. ROP* RP VS. ROL* 

Difference of degrees of 

freedom between two 

competing models 

3 3 3 3 

Likelihood ratio Chi-squared 

statistic 
12.28 12.44 14.78 9.94 

p-value 0.006** 0.006** 0.002** 0.02 ** 

Superior model (with better 

goodness of fit of the model) 
ROL ROP ROP ROL 

*: ROP stands for random-parameter ordered probit model with observed heterogeneity; ROL stands for random-

parameter ordered logit model with observed heterogeneity; RP stands for random-parameter ordered probit model; 

RL stands for random-parameter ordered logit model. 

** statistically significant at a 0.05 significance level. 
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Since ROL and ROP are compared as non-nested models, the likelihood ratio test does not 

apply to the comparison of ROL and ROP models. Alternatively, three metrics: precision, recall, 

and accuracy, which are widely used for evaluating a classification model, are used for evaluating 

the performance of ROP and ROL models. A training dataset with 80% of the sample and a test 

dataset with 20% of the sample are obtained. The training dataset and test dataset are randomly 

sampled. During the sampling, both datasets are ensured to have similar percentages of data points 

by category (i.e., by crash severity outcomes). The sampling procedure is repeated 30 times 

(Rahman et al., 2019; Xie et al., 2019). For each time, the model is developed using the training 

dataset, and then the model is evaluated using the test dataset. The three metrics are evaluated for 

30 times, and the results are averaged and presented in Table B-6. The precision and recall are 

evaluated for each crash severity level (i.e., O, C, or KAB). Also, the overall precision and recall 

are evaluated by computing the micro-average values of the precision and recall, and the results 

are shown in Table B-6. A t-test is conducted to determine if the means of evaluated metrics for 

ROP and ROL models are significantly different from each other. In terms of accuracy, overall 

precision, and overall recall, the ROP model outperforms the ROL model. The results of accuracy, 

overall precision, and overall recall for ROP and ROL models are significantly different from each 

other at a 0.05 significance level. 

Table B-6 Classification model performance metrics 

Model Accuracy Precision Recall 

 Overall For O 

Level 

For C 

Level 

For 

KAB 

Level 

Overall 

(Micro-

average) 

For O 

Level 

For C 

Level 

For 

KAB 

Level 

Overall 

(Micro-

average) 

ROP# 74.8%** 80.0% 19.1%* 49.5%** 74.8%** 92.5%** 10.5%** 3.9% 74.8%** 

ROL# 72.6%** 80.1% 17.8%* 37.5%** 72.6%** 89.1%** 13.5%** 4.3% 72.6%** 

#: ROP stands for random-parameter ordered probit model with observed heterogeneity; ROL stands for random-

parameter ordered logit model with observed heterogeneity 

*: results of ROP and ROL are statistically different at a 0.1 significance level 

**: results of ROP and ROL are statistically different at a 0.05 significance level 
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APPENDIX B-4 MODEL ESTIMATION RESULTS 

Since the ROP model is deemed as best based on the discussion in APPENDIX B-3, only 

ROP model estimation results are discussed here. As shown in Table B-3, the observed 

heterogeneity of ASCS is estimated by two intersection/corridor-level variables (i.e., S_Difover10 

and Signal Distance). Other variables related to intersection features such as the number of legs at 

an intersection and the number of through/left/right lanes at an intersection are attempted in the 

model, but these variables are not significant. Other variables related to corridor features such as 

average AADT on a corridor are tried in the model, but they are not significant.  

The coefficient of the ASCS variable is a function of intersection/corridor-level variables 

(i.e., speed limit difference between a major road and a minor road at an intersection that is equal 

to or greater than 10 mph or S_Difover10, and average signal distance on a corridor or Signal 

Distance). Based on the estimation of the coefficient, the coefficient of the ASCS variable in the 

ROP model can be expressed as, 

 
, _ 10,  tan ,0.443 0.127( ) 0.637( )ASCS i S Difover i Signal Dis ce ix x = − + +  (B-7) 

where, i  is an observation ID (i.e., a specific crash). _ 10,S Difover ix  is one if the speed limit 

difference between a major street and a minor street at an intersection is equal to or greater than 

10 mph and otherwise is zero.  tan ,Signal Dis ce ix  is the average signal distance on a corridor. 

Figure B-1 to Figure B-3 show observed heterogeneity in terms of coefficient of the ASCS 

variable estimated by the ROP model, which represents hierarchical effects of ASCS on the crash 

severity. The hierarchical effects of ASCS on the crash severity represent the ASCS effect varied 

by intersection and corridor features. Based on Eq. (B-7), two linear functions are plotted in Figure 

B-1. In Figure B-1, a negative coefficient in the y-axis indicates that the presence of ASCS is 

associated with lower crash severity, whereas a positive coefficient indicates that the presence of 

ASCS is associated with higher crash severity.  The following observations are derived from 

Figure B-1: 

• In Case 1, where speed limit difference between a major street and a minor street at an 

intersection (intersection feature) is equal to or greater than 10 mph, the coefficient of 

ASCS increases as the average signal distance on a corridor increases. When the average 

signal distance on a corridor (corridor feature) exceeds the threshold of 0.49 miles, the 

coefficient of ASCS becomes positive, suggesting the presence of ASCS associated with 

higher crash severity.  

• In Case 2, where speed limit difference between a major street and a minor street at an 

intersection is less than 10 mph, the coefficient of ASCS increases as the average signal 

distance on a corridor increases. When the average signal distance on a corridor exceeds 
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the threshold of 0.69 miles, the coefficient of ASCS becomes positive, suggesting the 

presence of ASCS associated with higher crash severity.  

• The threshold of Case 2 is larger than that of Case 1, indicating that when the intersection 

features are less likely to increase the crash severity level, the larger signal distance on a 

corridor can be accepted to deploy the ASCS without increasing the probability of higher 

crash severity. 

 

Figure B-1 Coefficient of ASCS VS. average signal distance 

Figure B-2 shows the kernel density of conditional means for the coefficient of ASCS. It 

turns out that the majority (78%) of the conditional means (the unshaded portion in the figure) has 

negative signs, suggesting the presence of ASCS associated with lower crash severity for most of 

the observations. It is concluded that the presence of ASCS is associated with lower crash severity.  
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Figure B-2 Kernel density of the conditional means for the coefficient of ASCS variable 

Figure B-3 shows 95% confidence intervals for the conditional means of the coefficient of 

the ASCS variable in the ROP model for observation IDs from 2600 to 2800. The ASCS effect on 

crash severity varies across different intersections and corridors. In contrast, some crashes have 

the same ASCS effect since they occurred at a similar intersection (same speed limit difference 

category) on the same corridor.  
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Figure B-3: 95% confidence intervals for the conditional means of the coefficient of the ASCS variable in the ROP 

model for observation IDs from 2600 to 2800 

*: Crashes that occurred at intersections where speed limit difference between major streets and minor streets is equal 

to or greater than 10 mph 

#: Crashes that occurred at intersections where speed limit difference between major streets and minor streets is less 

than 10 mph 
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APPENDIX C-1 IDENTIFICATION OF SECONDARY CRASHES 

The temporal threshold used in this study to identify secondary crashes (i.e., up to 1 hour 

after a crash occurrence on the freeway) can be justified based on the overall crash detection, 

response and clearance time in South Carolina. According to Chowdhury et al. (Chowdhury et al., 

2007), the incident detection time of Traffic Management Center (TMC) is 1-5 minutes for South 

Carolina and arrival of the first responder takes 9-10 minutes after that. In addition, according to 

SCDOT State Highway Emergency Program’s (SCDOT, 2020b) 2019 database (obtained from 

SCDOT), the average clearance time for Charleston (where the freeways with ASCS deployed on 

alternate routes are located) is 38.5 minutes and for Richland-Lexington (where the freeways with 

non-ASCS alternate routes are located) is 38.7 minutes. Therefore, on average we get 48-54 

minutes by combining the detection, response and clearance time which is lower than the selected 

temporal threshold of 1 hour for secondary crash identification. Using this 1-hour temporal 

threshold, the research team can decide on the spatial threshold for secondary crash identification 

by observing the relative change in the number of identified secondary crashes as we vary the 

spatial threshold. Figure C-1 presents the relative change in the number of identified secondary 

crashes for spatial threshold ranging from 1 mile to 4 miles. As observed from Figure C-1, an 

increment of the spatial threshold from 2 miles to 2.5 miles causes less than 10% relative change 

(i.e., less than 10% relative increase) in the number of identified secondary crashes. While 

increasing the spatial threshold beyond 3 miles can cause this relative change to be lower than 5%, 

the research team chooses to use a fixed spatial threshold of 2 miles as it makes more sense with 

SCDOT practitioners as an upper limit for the spatial impact range based on their experience. 

 

Figure C-1 Relative change in number of secondary crashes with varying spatial threshold 

The limitation of using a fixed spatio-temporal criterion is that it may not capture all 

induced secondary crashes since the impact of some primary crashes on traffic may exceed the 

predefined spatio-temporal range. Also, this may include some crashes that may have been caused 
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by some other factors. Therefore, the research team utilizes two additional criteria, which are 

“manner of collision” and “probable cause of collision”, after applying spatial and temporal 

thresholds for filtering the secondary crashes. The rationale behind using these two criteria is to 

prevent any crashes from being misclassified as secondary crashes that occurred due to some other 

reasons. To be more specific, if the “manner of collision” for a crash that falls within the spatio-

temporal impact range of a primary crash is listed as a “head-on collision”, then the research team 

does not label that crash as a secondary crash. Typically, a head-on collision can occur only 

between two vehicles traveling in opposing directions. Therefore, crash data related to either one 

of two vehicles involved in a head-on collision should not be labeled as a secondary crash. Apart 

from that, the other types of crashes, for example, rear-end, angle, and side-swipe crashes, are not 

discarded this way because it is not reasonable to assume that these types of crashes cannot be 

caused by a primary crash’s impact. Similarly, if the “probable cause of collision” for a crash that 

falls within the spatio-temporal impact range of a primary crash is listed as either one of (a) 

tire/wheel failure, (b) mechanical failure of the vehicle, (c) debris/obstruction or animal on the 

roadway, and (d) medical related, then the research team deems it reasonable to not label that crash 

as a secondary crash. Thus, the research team does not label a crash within the spatio-temporal 

impact range of a primary crash as a secondary crash, only if it is clearly not reasonable to be 

labeled as a secondary crash. While this information might be subject to police misspecification 

and reporting practice, the research team could not find any additional means to cross-validate this 

information. However, the research team observes that after satisfying the spatio-temporal criteria, 

only a few crashes are not considered as secondary crashes due to their “manner of collision” or 

“probable cause of collision”. For example, for Charleston I-26 E and I-26 W, only 6 out of total 

3562 crashes, and for Richland-Lexington I-26, no crashes out of total 3179 crashes are discarded 

as secondary crashes (after satisfying the spatio-temporal criteria) due to their manner of collision 

or probable cause of collision. Figure C-2 presents this crash identification procedure with a flow 

diagram. 

 

Figure C-2 Crash identification procedure 
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APPENDIX C-2 MODEL VARIABLES 

 “Peak period” is used as a predictor for modeling the likelihood of secondary crash 

occurrences on all the freeway sections. For each freeway section, the research team analyzes the 

hourly average travel time recorded by ClearGuide (Iteris, 2020) to define corridor-specific peak 

periods. The research team observes hourly average travel time for weekdays and weekends 

separately. However, no significant weekend peak periods are detected. Peak periods only exist on 

weekdays for the freeway sections considered here. Table C-1 presents the corridor-specific 

weekday peak periods that are considered for logistic regression modeling. Note that, both 

Charleston I-26 E and Richland-Lexington I-26 E experience AM peak periods as traffic goes in 

to the center of the cities during this time (Charleston I-26 E goes in to the center of Charleston, 

and Richland-Lexington I-26 E goes in to the center of Columbia). Similarly, Charleston I-26 W 

and Richland-Lexington I-26 W experience PM peak periods as traffic comes out of the center of 

the cities during this time. 

Table C-1 Corridor-specific weekday peak periods 

Corridor type Corridor name 
Corridor-specific weekday peak 

period 

Freeways with ASCS deployed on 

alternate routes 

Charleston I-26 E 5:30 AM to 8:30 AM 

Charleston I-26 W 3.00 PM to 6.00 PM 

Freeways with non-ASCS alternate 

routes 

Richland-Lexington I-26 E 6.30 AM to 8.30 AM 

Richland-Lexington I-26 W 3.30 PM to 6.30 PM 

 

“After-period indicator for freeways with ASCS deployed on alternate routes” is used as a 

predictor to investigate the effect of ASCS deployment in the alternate route on the likelihood of 

freeway secondary crashes. In the models, “after-period indicator for freeways with ASCS 

deployed on alternate routes” is specified as 1 if a crash occurs in the after period of ASCS 

deployment, and 0 if a crash occurs in the before period of ASCS deployment. For the freeways 

with non-ASCS alternate routes, ASCS was not deployed on the alternate routes. The research 

team still includes a predictor called “after-period indicator for freeways with non-ASCS alternate 

routes” with same temporal division as the freeways with ASCS deployed on alternate routes in 

order to examine if the effect of the temporal division (before-after period) differs between the 

freeways with ASCS deployed on alternate routes and the freeways with non-ASCS alternate 

routes.  

“Temporal trend” variable is included to account for long-term temporal trends in safety 

due to unobserved factors such as long-term roadway conditions, weather conditions, and 

improvements in vehicular technologies (Persaud et al., 2010). The “Temporal trend” variable is 



 C-4 

coded as numerical values. For example, if a crash occurs in 2014, it is specified as 0, if a crash 

occurs in 2015, it is specified as 1, and so on. 

Table C-2 summarizes all the variables that are considered for the analysis of the likelihood 

of secondary crashes. 

Table C-2 Model variables 

Category Variable name Description 

Response 

variable 
Crash code 

1 – Primary crash that induces secondary crash 

0 – Primary crash that does not induce any secondary crash 

Explanatory 

variables 

After period 

indicator 

1 – Crash occurs in the after period of ASCS deployment 

0 – Crash occurs in the before period of ASCS deployment 

Light condition 
1 – Dawn, dusk, dark or limited light 

0 – Daylight 

Roadway surface 

condition 

1 – Icy, snowy or wet 

0 – Dry 

Weather condition 
1 – Adverse weather 

0 – otherwise 

Rear end 
1 – Primary crash is rear end 

0 – otherwise 

Angle crash 
1 – Primary crash is angle crash 

0 – otherwise 

Weekday 
1 – Primary crash occurs on a weekday 

0 – otherwise 

Peak period 
1 – Primary crash occurs during peak period 

0 – otherwise 

Crash severity 
Five levels (0, 1, 2, 3, and 4); 0 = no injury, 1 = possible injury, 2 = 

minor injury, 3 = serious injury, 4 = fatal 

Temporal trend 

Numerical values. 0 if a crash occurs in 2014, 1 if a crash occurs in 2015, 

2 if a crash occurs in 2016, 3 if a crash occurs in 2017, 4 if a crash occurs 

in 2018. 

AADT Numerical values. ln (AADT) is used for scaling down purpose. 
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APPENDIX C-3 RELATIONSHIP BETWEEN THE LIKELIHOOD OF 

SECONDARY CRASHS AND TRAFFIC VOLUME AND SPEED 

The research team computes the weighted average traffic count and speed on the freeway 

for the one-hour after period of each crash occurrence based on the hourly traffic count and speed 

data collected from SCDOT Traffic Polling and Analysis System. The weighted average of traffic 

count and speed is computed in the same way as the weighted average travel time computation 

explained in subsection “6.2.2 Verification of Alternate Routes”. 

In Figure C-3, the research team presents two bar charts that present the percentages of 

“Crash code 1” (i.e., crashes that induced secondary crashes) across various ranges of traffic counts 

and speed on the freeway during the one-hour after period of a freeway crash occurrence. For each 

range shown in Figure C-3(a) and Figure C-3(b), two separate bars are used to show the 

percentages of “Crash code 1” during the before period and the after period of ASCS 

implementation. In Figure C-3(a), the research team combines vehicle counts during the one-hour 

after period of freeway crash occurrences ranging from 0 to 3000 vehicles/hour into one bar and 

from 4000-6000 vehicles/hour into another bar because of small number of observations. 

Therefore, three ranges can be considered for Figure C-3(a); lower range (i.e., 0-3000 

vehicles/hour), mid-range (i.e., 3000-4000 vehicles/hour), and upper range (i.e., 4000-6000 

vehicles/hour). As observed from Figure C-3(a), first of all, no consistent positive or negative trend 

is found between the percentages of “Crash code 1” and varying ranges of traffic counts during 

the one-hour after period of freeway crash occurrences; the maximum percentage of “Crash code 

1” is found for the mid-range (i.e., 3000-4000 vehicles/hour). Second, lower percentages of “Crash 

code 1” during the after period of ASCS implementation compared to the before period of ASCS 

implementation are found for middle (i.e., 3000-4000 vehicles/hour) and upper ranges (i.e., 4000-

6000 vehicles/hour). Therefore, it can be concluded that the favorable effect of ASCS found for 

Charleston I-26 E is not contributed by reduced exposure or low traffic counts on the freeway (i.e., 

traffic counts on the freeway can be lower than usual as the freeway drivers start to take the 

alternate route after a crash occurrence on the freeway). 

However, in Figure C-3(b), it is observed that there is a negative or downward trend 

between the percentages of “Crash code 1” and the ranges of average vehicle speed during the one-

hour after period of freeway crash occurrences. While it is pretty much intuitive for primary 

crashes that increased speed on the freeway could cause higher percentage of primary crashes 

(Abdel-Aty et al., 2007), the same cannot be stated with confidence for secondary crashes. It is to 

be noted that, secondary crashes are caused due to sudden congestion/queue on the freeway 

because of sudden lane blockage or disturbance in the traffic flow caused by a primary crash on 

the freeway. Thus, higher average speed on the freeway during the one-hour after period of a 

freeway crash occurrence indicates less impact due to that crash. On the contrary, lower average 

speed on the freeway during the one-hour after period of a freeway crash occurrence indicates 

higher disturbance caused by that crash which would increase the risk for a secondary crash. 
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(a) 

 

(b) 

Figure C-3 Bar charts showing percentages of crash code 1 across ranges of (a) traffic counts and (b) average speed 

on the freeway during the one-hour after period of freeway crash occurrences 

To validate this further, the research team also performs a separate logistic regression 

modeling (as shown in Table C-3) utilizing the traffic counts and average speed information during 

the one-hour after period of freeway crash occurrences as continuous variables. As the “traffic 

counts” variable is not found significant at a 0.1 significance level, the research team omits it and 

other insignificant variables from the model presented in Table C-3 in order to obtain a better fit. 

It should be mentioned that these two variables were not used in the models presented earlier in 

this study because the traffic counts and average speed information is not available for all the 
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crashes. The research team found that, the traffic counts and average speed information is available 

for about 95% of the crash data considered for Charleston I-26 E. However, just for the sake of 

investigating if there is any relationship between the likelihood of secondary crashes and traffic 

counts or average speed during the one-hour after period of freeway crash occurrences, the 

available data can be considered sufficient. As shown in Table C-3, the “Speed” variable (i.e., 

average speed on the freeway during the one-hour after period of a freeway crash occurrence) is 

found to be significant at a 0.05 significance and it has a negative coefficient which further 

validates that as the average speed on the freeway is higher during the one-hour after period of a 

freeway crash occurrence, the likelihood of secondary crash occurrence is lower (same as 

concluded based on Table C-3(b)). Therefore, the research team concludes that the favorable effect 

of ASCS found for Charleston I-26 E in terms of reducing the likelihood of secondary crashes is 

not a contribution of reduced crash exposure (i.e., lower freeway traffic counts after a crash 

occurrence) or reduced speed on the freeway. 

Table C-3 Estimates of logit model using speed as an explanatory variable (for Charleston I-26 E) 

Predictors 

Coefficients: 

Estimate Pr(>|z|) 

(Intercept) -507.5 0.061* 

Rear-end 0.911 5.02e-05** 

After-period indicator of ASCS deployment -0.588 0.089* 

Temporal trend 0.239 0.075* 

Speed -0.021 2.80e-04** 

log(AADT) 1.810 6.56e-04** 

‘*’ statistically significant at a 0.1 significance level 

‘**’ statistically significant at a 0.05 significance level 
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APPENDIX C-4 RANDOM-PARAMETER LOGISTIC REGRESSION 

MODEL ESTIMATION AND RESULTS 

In the random-parameter binary logit model, iβ  is allowed to be varying for each 

observation i  rather than fixed for all observations. The distribution, ( | )ig θβ  is specified to 

enable iβ  vary across each individual observation, where θ  is a vector of the mean and variance 

of a random distribution. 

iβ  can be written as i i= +β Lωβ  , where β  is the vector of the mean of coefficients.  Note 

that, each coefficient can be written as ki k k i   = + . ki  is thk element in iβ  . iω  is a vector of 

random variables that follow random distributions. L  is a diagonal matrix that contains the 

standard deviations of the coefficients, k . In this study, ki  is considered to follow a normal 

distribution, which is specified as 2~ ( , )ki k kN   . The normal distribution specification for ki  

provides a better model fit, compared to other possible distibutions such as log normal distibution 

based on our analysis. 

To explore the unobserved heterogeneity of the parameters (i.e., coefficients in the model) 

across observations, conditional mean of parameters is estimated. The estimator of the conditional 

mean of the random parameters (Sarrias, 2016) is obtained by Simulated Maximum likelihood 

(SML) procedure, which is expressed as: 
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  (C-1)        

where, ˆ ˆˆ
ir ir= +β Lωβ ; iy  is the response variable (1 if seconary crash occurred; 0 

otherwise). idata stands for explanatory variables associated with each observation.  ˆ( | )iP i iy X ,β

is the estimated simulated probablity for the observation i  evaluated at the thr  random draw of iβ

; R is the total number of random draws in the SML procedure. In the estimation of conditional 

mean of paramter, a Halton random number generator with a standard uniform distribution, 

(0,1)U generates the random draws.  Detail Halton draws procedure can be found in (Sarrias, 

2016). 

The SML procedure is conducted to obtain the model estimation results using the 

“Rchoice” library in the R software. 100 Halton draws are used in the SML procedure for the 

purpose of model estimation (Sarrias, 2016). Likelihood ratio test is used to compare the 
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performance between random-parameter models and fixed-parameter models (Washington et al., 

2020). 

The estimations of random-parameter logistic model for Charleston I-26 E is presented in 

Table C-4. The random-parameter model explains the variability in the effect of ASCS deployment 

(i.e., ASCS deployment variable) across observations and provides more significant parameters 

over the fixed-parameter model (e.g., angle crash variable becomes significant in the random-

parameter model). Although the weekday variable is not significant in the random-parameter 

model, it is still kept since keeping the weekday variable reduces the AIC value and improves the 

overall goodness of fit of the model as observed in our analyses. The likelihood ratio test suggests 

that the random-parameter model improves the overall goodness of fit of the model compared to 

the fixed-parameter model, as shown in Table C-5. The standard deviation associated with the 

presence of ASCS (i.e., S.D. ASCS) is statistically significant at a 0.05 significance level, 

indicating the presence of unobserved heterogeneity across observations.  

As indicated in Table C-4, the random parameter of ASCS follows a normal distribution 

with a mean of -2.305 and a standard deviation of 2.351. Since the parameter of ASCS follows the 

normal distribution, it is estimated that 84% of all observations have a negative coefficient 

associated with the presence of ASCS in a corridor, suggesting an association between the presence 

of the ASCS deployed on the alternate route and the reduction of the likelihood of secondary 

crashes on the parallel freeway. For the remaining 16% of all observations, the coefficients 

associated with the presence of ASCS deployed on the alternate route are positive, suggesting an 

association between the presence of the ASCS on the alternate route and the increase of the 

likelihood of freeway secondary crashes.  

Table C-4 Results of model estimation for Charleston I-26 E with ASCS deployed on alternate route 

Predictors 

 

Coefficients 

Fixed-parameter model Random-parameter model 

 Estimate Pr (>|z|) Estimate  Pr (>|z|) 

Constant -26.209 1.73E-05 ** -31.396 6.73e-05 ** 

Temporal trend 0.265 0.0439 ** 0.3230 0.0433 ** 

Rear end 0.802 0.001 ** 1.087 0.002 ** 

Angle crash 0.679 0.117 0.959 0.082* 

Weekday -0.370 0.302 -0.628 0.168 
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Predictors 

 

Coefficients 

Fixed-parameter model Random-parameter model 

 Estimate Pr (>|z|) Estimate  Pr (>|z|) 

Peak period 0.916 8.63E-06 ** 1.107 3.06E-05 ** 

log(AADT) 1.916 0.0002 ** 2.334 0.0003** 

Mean. ASCS -0.631 0.063* -2.305 0.06* 

S.D. ASCS NA NA 2.351 0.0247** 

‘**’ statistically significant at a 0.05 significance level 

‘*’ statistically significant at a 0.1 significance level 

‘NA’ not available for the fixed-parameter model 

 

Table C-5 Likelihood ratio tests results 

 
Degree of 

freedom 
Log-likelihood 

Difference of 

degrees of 

freedom 

Chisq Pr(>Chisq) 

Fixed-parameter model 8 -450.22    

Random-parameter 

model 
9 -448.53 1 3.3736 0.066* 

‘*’ statistically significant at a 0.1 significance level 

 

Figure C-4 shows the kernel density of the individual’s conditional means for the 

coefficient of ASCS. It turns out that the majority of the individual’s conditional means (the 

unshaded portion in Figure C-4) has negative signs, suggesting the presence of ASCS associated 

with reductions of the likelihood of the secondary crashes for most of the observations.  
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Figure C-4 kernel density of the individual’s conditional means for the coefficient of ASCS (Charleston I-26 E with 

ASCS deployed on alternate route US 52) 
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APPENDIX D-1 RESULTS FOR EACH ASCS CORRIDOR 

 

 

Figure D-1 Operational analysis results for US 17A eastbound 

 

 

Figure D-2 Operational analysis results for US 17A westbound 
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Figure D-3 Operational analysis results for US 17 Business eastbound 

 

 

Figure D-4 Operational analysis results for US 17 Business westbound 
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Figure D-5 Operational analysis results for US 52 eastbound 

 

Figure D-6 Operational analysis results for US 52 westbound 
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Figure D-7 Operational analysis results for US 29 (St Mark Rd. to Hampton Rd.) eastbound 

 

 

Figure D-8 Operational analysis results for US 29 (St Mark Rd. to Hampton Rd.) westbound 
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Figure D-9 Operational analysis results for US 29 (Groce Rd. to J. Verne Smith Parkway) eastbound 

 

Figure D-10 Operational analysis results for US 29 (Groce Rd. to J. Verne Smith Parkway) westbound 
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Figure D-11 Operational analysis results for US 29 (Franklin Ave. to Tucapau) eastbound 

 

Figure D-12 Operational analysis results for US 29 (Franklin Ave. to Tucapau) westbound 
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Figure D-13 Operational analysis results for US 123 eastbound 

 

Figure D-14 Operational analysis results for US 123 westbound 
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Figure D-15 Operational analysis results for College Ave. northbound 

 

Figure D-16 Operational analysis results for College Ave. southbound 
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Figure D-17 Operational analysis results for US 378 eastbound 

 

Figure D-18 Operational analysis results for US 378 westbound 
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Figure D-19 Operational analysis results for SC 642 eastbound 

 

Figure D-20 Operational analysis results for SC 642 westbound 
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Figure D-21 Operational analysis results for US 17 westbound 

 

Figure D-22 Operational analysis results for US 17 eastbound 
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